Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280490195> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4280490195 endingPage "104638" @default.
- W4280490195 startingPage "104638" @default.
- W4280490195 abstract "Missing data is a common problem in a wide range of fields that can arise as a result of different reasons: lack of analysis, mishandling samples, measurement error, etc. The area of nutrition and food composition is no exception to the problem of missing values. Missing data in food composition databases (FCDB) significantly limits their usage. Commonly this problem is resolved by calculating mean or median from available data in the same FCDB or borrowing values from other FCDBs, however, this method produces notable errors. This paper focuses on missing value imputation using autoencoders, a deep learning algorithm that has the ability to approximate values by learning a higher-level representation of its input. The data used was from the FCDBs collected by the USDA FoodData Central. We compared the autoencoder imputation method with the commonly used approaches fill-in-with-mean and fill-in-with-median, and the results show that the autoencoder method for imputation provides superior results." @default.
- W4280490195 created "2022-05-22" @default.
- W4280490195 creator A5002919763 @default.
- W4280490195 creator A5067143303 @default.
- W4280490195 creator A5082115266 @default.
- W4280490195 date "2022-09-01" @default.
- W4280490195 modified "2023-10-15" @default.
- W4280490195 title "Missing value imputation in food composition data with denoising autoencoders" @default.
- W4280490195 cites W1499253590 @default.
- W4280490195 cites W2001353114 @default.
- W4280490195 cites W2003956364 @default.
- W4280490195 cites W2025768430 @default.
- W4280490195 cites W2057105140 @default.
- W4280490195 cites W2075685128 @default.
- W4280490195 cites W2137903965 @default.
- W4280490195 cites W2154727258 @default.
- W4280490195 cites W2250539671 @default.
- W4280490195 cites W2510850936 @default.
- W4280490195 cites W2788592841 @default.
- W4280490195 cites W2917522185 @default.
- W4280490195 cites W2939939530 @default.
- W4280490195 cites W2963918774 @default.
- W4280490195 cites W2964199361 @default.
- W4280490195 cites W2965835972 @default.
- W4280490195 cites W2966661 @default.
- W4280490195 cites W2978785217 @default.
- W4280490195 cites W3004161033 @default.
- W4280490195 cites W3021603874 @default.
- W4280490195 cites W3033040110 @default.
- W4280490195 cites W3044249689 @default.
- W4280490195 cites W6468916 @default.
- W4280490195 doi "https://doi.org/10.1016/j.jfca.2022.104638" @default.
- W4280490195 hasPublicationYear "2022" @default.
- W4280490195 type Work @default.
- W4280490195 citedByCount "3" @default.
- W4280490195 countsByYear W42804901952022 @default.
- W4280490195 countsByYear W42804901952023 @default.
- W4280490195 crossrefType "journal-article" @default.
- W4280490195 hasAuthorship W4280490195A5002919763 @default.
- W4280490195 hasAuthorship W4280490195A5067143303 @default.
- W4280490195 hasAuthorship W4280490195A5082115266 @default.
- W4280490195 hasConcept C101738243 @default.
- W4280490195 hasConcept C105795698 @default.
- W4280490195 hasConcept C108583219 @default.
- W4280490195 hasConcept C119857082 @default.
- W4280490195 hasConcept C124101348 @default.
- W4280490195 hasConcept C153180895 @default.
- W4280490195 hasConcept C154945302 @default.
- W4280490195 hasConcept C33923547 @default.
- W4280490195 hasConcept C41008148 @default.
- W4280490195 hasConcept C58041806 @default.
- W4280490195 hasConcept C9357733 @default.
- W4280490195 hasConceptScore W4280490195C101738243 @default.
- W4280490195 hasConceptScore W4280490195C105795698 @default.
- W4280490195 hasConceptScore W4280490195C108583219 @default.
- W4280490195 hasConceptScore W4280490195C119857082 @default.
- W4280490195 hasConceptScore W4280490195C124101348 @default.
- W4280490195 hasConceptScore W4280490195C153180895 @default.
- W4280490195 hasConceptScore W4280490195C154945302 @default.
- W4280490195 hasConceptScore W4280490195C33923547 @default.
- W4280490195 hasConceptScore W4280490195C41008148 @default.
- W4280490195 hasConceptScore W4280490195C58041806 @default.
- W4280490195 hasConceptScore W4280490195C9357733 @default.
- W4280490195 hasFunder F4320317424 @default.
- W4280490195 hasFunder F4320320300 @default.
- W4280490195 hasFunder F4320322554 @default.
- W4280490195 hasFunder F4320332999 @default.
- W4280490195 hasFunder F4320334322 @default.
- W4280490195 hasLocation W42804901951 @default.
- W4280490195 hasOpenAccess W4280490195 @default.
- W4280490195 hasPrimaryLocation W42804901951 @default.
- W4280490195 hasRelatedWork W1574575415 @default.
- W4280490195 hasRelatedWork W2024529227 @default.
- W4280490195 hasRelatedWork W2081476516 @default.
- W4280490195 hasRelatedWork W2181530120 @default.
- W4280490195 hasRelatedWork W2581984549 @default.
- W4280490195 hasRelatedWork W3028371478 @default.
- W4280490195 hasRelatedWork W3144172081 @default.
- W4280490195 hasRelatedWork W3179858851 @default.
- W4280490195 hasRelatedWork W4211215373 @default.
- W4280490195 hasRelatedWork W3123177881 @default.
- W4280490195 hasVolume "112" @default.
- W4280490195 isParatext "false" @default.
- W4280490195 isRetracted "false" @default.
- W4280490195 workType "article" @default.