Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280490312> ?p ?o ?g. }
- W4280490312 abstract "A central paradigm for building predictive models from time series data is to convert the data into a feature vector representation and then apply standard inductive learners. Typically, the conversion is done by manually defining features, which is an extremely time-consuming and error-prone process. This has motivated the development of algorithms that automatically construct features from time series. However, these systems are typically designed for univariate time series data. In contrast, many real-world applications require analyzing time series consisting of data collected by multiple sensors. In this context, it is often useful to derive new series by fusing the collected data both within a sensor and across multiple different sensors. Unfortunately, this poses additional challenges for automated construction as exponentially more operations are possible than in the univariate case. This paper proposes an automated feature construction system called TSFuse, which supports fusion and explores the search space in a computationally efficient way. We perform an empirical evaluation on real-world time series classification datasets and show that our system is able to find a better feature representation compared to existing feature construction systems for univariate time series data." @default.
- W4280490312 created "2022-05-22" @default.
- W4280490312 creator A5022385578 @default.
- W4280490312 creator A5057911553 @default.
- W4280490312 creator A5074451226 @default.
- W4280490312 creator A5074752965 @default.
- W4280490312 creator A5087958112 @default.
- W4280490312 date "2022-05-16" @default.
- W4280490312 modified "2023-10-02" @default.
- W4280490312 title "TSFuse: automated feature construction for multiple time series data" @default.
- W4280490312 cites W1582873796 @default.
- W4280490312 cites W1587972688 @default.
- W4280490312 cites W1966168183 @default.
- W4280490312 cites W1988189469 @default.
- W4280490312 cites W1993332189 @default.
- W4280490312 cites W2012079387 @default.
- W4280490312 cites W2017634428 @default.
- W4280490312 cites W2046945713 @default.
- W4280490312 cites W2048231652 @default.
- W4280490312 cites W2064675550 @default.
- W4280490312 cites W2067147912 @default.
- W4280490312 cites W2069664287 @default.
- W4280490312 cites W2075714842 @default.
- W4280490312 cites W2091921805 @default.
- W4280490312 cites W2094415483 @default.
- W4280490312 cites W2104403658 @default.
- W4280490312 cites W2112800069 @default.
- W4280490312 cites W2118706537 @default.
- W4280490312 cites W2126511896 @default.
- W4280490312 cites W2145343602 @default.
- W4280490312 cites W2162800060 @default.
- W4280490312 cites W2167101736 @default.
- W4280490312 cites W2167277498 @default.
- W4280490312 cites W2182353144 @default.
- W4280490312 cites W2256679588 @default.
- W4280490312 cites W2395121474 @default.
- W4280490312 cites W2397598690 @default.
- W4280490312 cites W2726969888 @default.
- W4280490312 cites W2744906851 @default.
- W4280490312 cites W2759903677 @default.
- W4280490312 cites W2760178629 @default.
- W4280490312 cites W2765753848 @default.
- W4280490312 cites W2802314367 @default.
- W4280490312 cites W2809208456 @default.
- W4280490312 cites W2810974466 @default.
- W4280490312 cites W2888136557 @default.
- W4280490312 cites W2892035503 @default.
- W4280490312 cites W2909907851 @default.
- W4280490312 cites W2963587312 @default.
- W4280490312 cites W2964253853 @default.
- W4280490312 cites W2967988901 @default.
- W4280490312 cites W2997377600 @default.
- W4280490312 cites W2999585935 @default.
- W4280490312 cites W3008027773 @default.
- W4280490312 cites W3013995528 @default.
- W4280490312 cites W3033844118 @default.
- W4280490312 cites W3102476541 @default.
- W4280490312 cites W3115948762 @default.
- W4280490312 cites W3210939414 @default.
- W4280490312 cites W4255601674 @default.
- W4280490312 doi "https://doi.org/10.1007/s10994-021-06096-2" @default.
- W4280490312 hasPublicationYear "2022" @default.
- W4280490312 type Work @default.
- W4280490312 citedByCount "3" @default.
- W4280490312 countsByYear W42804903122021 @default.
- W4280490312 countsByYear W42804903122022 @default.
- W4280490312 countsByYear W42804903122023 @default.
- W4280490312 crossrefType "journal-article" @default.
- W4280490312 hasAuthorship W4280490312A5022385578 @default.
- W4280490312 hasAuthorship W4280490312A5057911553 @default.
- W4280490312 hasAuthorship W4280490312A5074451226 @default.
- W4280490312 hasAuthorship W4280490312A5074752965 @default.
- W4280490312 hasAuthorship W4280490312A5087958112 @default.
- W4280490312 hasBestOaLocation W42804903121 @default.
- W4280490312 hasConcept C111919701 @default.
- W4280490312 hasConcept C119857082 @default.
- W4280490312 hasConcept C124101348 @default.
- W4280490312 hasConcept C138885662 @default.
- W4280490312 hasConcept C143724316 @default.
- W4280490312 hasConcept C151406439 @default.
- W4280490312 hasConcept C151730666 @default.
- W4280490312 hasConcept C153180895 @default.
- W4280490312 hasConcept C154945302 @default.
- W4280490312 hasConcept C161584116 @default.
- W4280490312 hasConcept C17744445 @default.
- W4280490312 hasConcept C199163554 @default.
- W4280490312 hasConcept C199539241 @default.
- W4280490312 hasConcept C2776359362 @default.
- W4280490312 hasConcept C2776401178 @default.
- W4280490312 hasConcept C2779343474 @default.
- W4280490312 hasConcept C33954974 @default.
- W4280490312 hasConcept C41008148 @default.
- W4280490312 hasConcept C41895202 @default.
- W4280490312 hasConcept C83665646 @default.
- W4280490312 hasConcept C86803240 @default.
- W4280490312 hasConcept C94625758 @default.
- W4280490312 hasConcept C98045186 @default.
- W4280490312 hasConceptScore W4280490312C111919701 @default.
- W4280490312 hasConceptScore W4280490312C119857082 @default.
- W4280490312 hasConceptScore W4280490312C124101348 @default.