Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280490989> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4280490989 abstract "Bayesian optimization (BO) has been widely used in machine learning and simulation optimization. With the increase in computational resources and storage capacities in these fields, high-dimensional and large-scale problems are becoming increasingly common. In this study, we propose a model aggregation method in the Bayesian optimization (MamBO) algorithm for efficiently solving high-dimensional large-scale optimization problems. MamBO uses a combination of subsampling and subspace embeddings to collectively address high dimensionality and large-scale issues; in addition, a model aggregation method is employed to address the surrogate model uncertainty issue that arises when embedding is applied. This surrogate model uncertainty issue is largely ignored in the embedding literature and practice, and it is exacerbated when the problem is high-dimensional and data are limited. Our proposed model aggregation method reduces these lower-dimensional surrogate model risks and improves the robustness of the BO algorithm. We derive an asymptotic bound for the proposed aggregated surrogate model and prove the convergence of MamBO. Benchmark numerical experiments indicate that our algorithm achieves superior or comparable performance to other commonly used high-dimensional BO algorithms. Moreover, we apply MamBO to a cascade classifier of a machine learning algorithm for face detection, and the results reveal that MamBO finds settings that achieve higher classification accuracy than the benchmark settings and is computationally faster than other high-dimensional BO algorithms." @default.
- W4280490989 created "2022-05-22" @default.
- W4280490989 creator A5000310523 @default.
- W4280490989 creator A5029068742 @default.
- W4280490989 creator A5032157824 @default.
- W4280490989 creator A5049158387 @default.
- W4280490989 date "2022-05-16" @default.
- W4280490989 modified "2023-09-29" @default.
- W4280490989 title "A model aggregation approach for high-dimensional large-scale optimization" @default.
- W4280490989 doi "https://doi.org/10.48550/arxiv.2205.07525" @default.
- W4280490989 hasPublicationYear "2022" @default.
- W4280490989 type Work @default.
- W4280490989 citedByCount "0" @default.
- W4280490989 crossrefType "posted-content" @default.
- W4280490989 hasAuthorship W4280490989A5000310523 @default.
- W4280490989 hasAuthorship W4280490989A5029068742 @default.
- W4280490989 hasAuthorship W4280490989A5032157824 @default.
- W4280490989 hasAuthorship W4280490989A5049158387 @default.
- W4280490989 hasBestOaLocation W42804909891 @default.
- W4280490989 hasConcept C104317684 @default.
- W4280490989 hasConcept C111030470 @default.
- W4280490989 hasConcept C11413529 @default.
- W4280490989 hasConcept C119857082 @default.
- W4280490989 hasConcept C126255220 @default.
- W4280490989 hasConcept C131675550 @default.
- W4280490989 hasConcept C13280743 @default.
- W4280490989 hasConcept C137836250 @default.
- W4280490989 hasConcept C154945302 @default.
- W4280490989 hasConcept C185592680 @default.
- W4280490989 hasConcept C185798385 @default.
- W4280490989 hasConcept C205649164 @default.
- W4280490989 hasConcept C2778049539 @default.
- W4280490989 hasConcept C32230216 @default.
- W4280490989 hasConcept C32834561 @default.
- W4280490989 hasConcept C33923547 @default.
- W4280490989 hasConcept C41008148 @default.
- W4280490989 hasConcept C41608201 @default.
- W4280490989 hasConcept C55493867 @default.
- W4280490989 hasConcept C63479239 @default.
- W4280490989 hasConceptScore W4280490989C104317684 @default.
- W4280490989 hasConceptScore W4280490989C111030470 @default.
- W4280490989 hasConceptScore W4280490989C11413529 @default.
- W4280490989 hasConceptScore W4280490989C119857082 @default.
- W4280490989 hasConceptScore W4280490989C126255220 @default.
- W4280490989 hasConceptScore W4280490989C131675550 @default.
- W4280490989 hasConceptScore W4280490989C13280743 @default.
- W4280490989 hasConceptScore W4280490989C137836250 @default.
- W4280490989 hasConceptScore W4280490989C154945302 @default.
- W4280490989 hasConceptScore W4280490989C185592680 @default.
- W4280490989 hasConceptScore W4280490989C185798385 @default.
- W4280490989 hasConceptScore W4280490989C205649164 @default.
- W4280490989 hasConceptScore W4280490989C2778049539 @default.
- W4280490989 hasConceptScore W4280490989C32230216 @default.
- W4280490989 hasConceptScore W4280490989C32834561 @default.
- W4280490989 hasConceptScore W4280490989C33923547 @default.
- W4280490989 hasConceptScore W4280490989C41008148 @default.
- W4280490989 hasConceptScore W4280490989C41608201 @default.
- W4280490989 hasConceptScore W4280490989C55493867 @default.
- W4280490989 hasConceptScore W4280490989C63479239 @default.
- W4280490989 hasLocation W42804909891 @default.
- W4280490989 hasOpenAccess W4280490989 @default.
- W4280490989 hasPrimaryLocation W42804909891 @default.
- W4280490989 hasRelatedWork W2786244421 @default.
- W4280490989 hasRelatedWork W2895841339 @default.
- W4280490989 hasRelatedWork W2950143554 @default.
- W4280490989 hasRelatedWork W2985038493 @default.
- W4280490989 hasRelatedWork W3007002905 @default.
- W4280490989 hasRelatedWork W3087999580 @default.
- W4280490989 hasRelatedWork W3098585059 @default.
- W4280490989 hasRelatedWork W3199638712 @default.
- W4280490989 hasRelatedWork W4225307019 @default.
- W4280490989 hasRelatedWork W4281810582 @default.
- W4280490989 isParatext "false" @default.
- W4280490989 isRetracted "false" @default.
- W4280490989 workType "article" @default.