Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280491046> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4280491046 abstract "At present, there is a lack of careful consideration in the judgment process of pronunciation errors in many English speeches. These pronunciation errors will create a great impact on personalized learning. The process of creating a data set for errors is also not an easy work. On considering the above obstacle, an artificial intelligent recognition method of pronunciation errors in English speeches for personalized learning along with big data is proposed. This method takes the average pronunciation level of standard speech as the basis of pronunciation error judgment, and judges the pronunciation and application of words such as speed, pronunciation, semantics, etc. In the Hidden Markov Model (HMM) modelling method of speech recognition, Viterbi algorithm and improved posterior probability algorithm are implemented to recognize student’s vocalization instinctively. Through the segmentation and scoring of basic units, English learners are provided with reliable pronunciation information feedback, correct pronunciation errors and give corresponding feedback according to the judgment results. The innovation outcome establishes that the intelligent recognition method for personalized learning can efficiently diminish the error rate and enhance the accuracy of error detection. Let the artificial intelligence (AI) correct English learner’s pronunciation errors intelligently." @default.
- W4280491046 created "2022-05-22" @default.
- W4280491046 creator A5035366832 @default.
- W4280491046 creator A5046738852 @default.
- W4280491046 date "2022-05-18" @default.
- W4280491046 modified "2023-10-18" @default.
- W4280491046 title "AI Recognition Method of Pronunciation Errors in Oral English Speech with the Help of Big Data for Personalized Learning" @default.
- W4280491046 cites W1534875419 @default.
- W4280491046 cites W2074047085 @default.
- W4280491046 cites W2127369946 @default.
- W4280491046 cites W2142861274 @default.
- W4280491046 cites W2767538977 @default.
- W4280491046 cites W2797710102 @default.
- W4280491046 cites W2806172474 @default.
- W4280491046 cites W2891540872 @default.
- W4280491046 cites W2896224748 @default.
- W4280491046 cites W2897763052 @default.
- W4280491046 cites W2940904221 @default.
- W4280491046 cites W2941629533 @default.
- W4280491046 cites W2942027201 @default.
- W4280491046 cites W2947318141 @default.
- W4280491046 cites W2964660339 @default.
- W4280491046 cites W2991336573 @default.
- W4280491046 cites W2995235118 @default.
- W4280491046 cites W2999467432 @default.
- W4280491046 cites W3000894155 @default.
- W4280491046 cites W3008362905 @default.
- W4280491046 cites W3008402854 @default.
- W4280491046 cites W3008496855 @default.
- W4280491046 cites W3010119714 @default.
- W4280491046 cites W3014039488 @default.
- W4280491046 cites W3034188795 @default.
- W4280491046 cites W3046523833 @default.
- W4280491046 cites W3089700932 @default.
- W4280491046 cites W3091661619 @default.
- W4280491046 cites W3092070396 @default.
- W4280491046 cites W3094484028 @default.
- W4280491046 cites W3158698841 @default.
- W4280491046 doi "https://doi.org/10.1142/s0219649222400287" @default.
- W4280491046 hasPublicationYear "2022" @default.
- W4280491046 type Work @default.
- W4280491046 citedByCount "1" @default.
- W4280491046 countsByYear W42804910462022 @default.
- W4280491046 crossrefType "journal-article" @default.
- W4280491046 hasAuthorship W4280491046A5035366832 @default.
- W4280491046 hasAuthorship W4280491046A5046738852 @default.
- W4280491046 hasConcept C111919701 @default.
- W4280491046 hasConcept C138885662 @default.
- W4280491046 hasConcept C154945302 @default.
- W4280491046 hasConcept C204321447 @default.
- W4280491046 hasConcept C23224414 @default.
- W4280491046 hasConcept C2780844864 @default.
- W4280491046 hasConcept C28490314 @default.
- W4280491046 hasConcept C40969351 @default.
- W4280491046 hasConcept C41008148 @default.
- W4280491046 hasConcept C41895202 @default.
- W4280491046 hasConcept C89600930 @default.
- W4280491046 hasConcept C98045186 @default.
- W4280491046 hasConceptScore W4280491046C111919701 @default.
- W4280491046 hasConceptScore W4280491046C138885662 @default.
- W4280491046 hasConceptScore W4280491046C154945302 @default.
- W4280491046 hasConceptScore W4280491046C204321447 @default.
- W4280491046 hasConceptScore W4280491046C23224414 @default.
- W4280491046 hasConceptScore W4280491046C2780844864 @default.
- W4280491046 hasConceptScore W4280491046C28490314 @default.
- W4280491046 hasConceptScore W4280491046C40969351 @default.
- W4280491046 hasConceptScore W4280491046C41008148 @default.
- W4280491046 hasConceptScore W4280491046C41895202 @default.
- W4280491046 hasConceptScore W4280491046C89600930 @default.
- W4280491046 hasConceptScore W4280491046C98045186 @default.
- W4280491046 hasIssue "Supp02" @default.
- W4280491046 hasLocation W42804910461 @default.
- W4280491046 hasOpenAccess W4280491046 @default.
- W4280491046 hasPrimaryLocation W42804910461 @default.
- W4280491046 hasRelatedWork W1521297879 @default.
- W4280491046 hasRelatedWork W1909151225 @default.
- W4280491046 hasRelatedWork W1974738623 @default.
- W4280491046 hasRelatedWork W1987783679 @default.
- W4280491046 hasRelatedWork W2036150633 @default.
- W4280491046 hasRelatedWork W2109705048 @default.
- W4280491046 hasRelatedWork W2136763963 @default.
- W4280491046 hasRelatedWork W2160030256 @default.
- W4280491046 hasRelatedWork W2940588515 @default.
- W4280491046 hasRelatedWork W3184123547 @default.
- W4280491046 hasVolume "21" @default.
- W4280491046 isParatext "false" @default.
- W4280491046 isRetracted "false" @default.
- W4280491046 workType "article" @default.