Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280491334> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4280491334 abstract "<sec> <title>BACKGROUND</title> Hip and knee osteoarthritis is substantially prevalent worldwide, with large numbers of older adults undergoing joint replacement (arthroplasty) every year. A backlog of elective surgery due to the COVID-19 pandemic, and an aging population, has led to substantial issues with access to timely arthroplasty surgery. A potential method to improve the efficiency of arthroplasty services is by increasing the percentage of patients who are listed for surgery from primary care referrals. The use of artificial intelligence (AI) techniques, specifically machine learning, provides a potential unexplored solution to correctly and rapidly select suitable patients for arthroplasty surgery. </sec> <sec> <title>OBJECTIVE</title> This study has 2 objectives: (1) develop a cohort of patients with referrals by general practitioners regarding assessment of suitability for hip or knee replacement from National Health Service (NHS) Grampian data via the Grampian Data Safe Haven and (2) determine the demographic, clinical, and imaging characteristics that influence the selection of patients to undergo hip or knee arthroplasty, and develop a tested and validated patient-specific predictive model to guide arthroplasty referral pathways. </sec> <sec> <title>METHODS</title> The AI to Revolutionise the Patient Care Pathway in Hip and Knee Arthroplasty (ARCHERY) project will be delivered through 2 linked work packages conducted within the Grampian Data Safe Haven and Safe Haven Artificial Intelligence Platform. The data set will include a cohort of individuals aged ≥16 years with referrals for the consideration of elective primary hip or knee replacement from January 2015 to January 2022. Linked pseudo-anonymized NHS Grampian health care data will be acquired including patient demographics, medication records, laboratory data, theatre records, text from clinical letters, and radiological images and reports. Following the creation of the data set, machine learning techniques will be used to develop pattern classification and probabilistic prediction models based on radiological images. Supplemental demographic and clinical data will be used to improve the predictive capabilities of the models. The sample size is predicted to be approximately 2000 patients—a sufficient size for satisfactory assessment of the primary outcome. Cross-validation will be used for development, testing, and internal validation. Evaluation will be performed through standard techniques, such as the C statistic (area under curve) metric, calibration characteristics (Brier score), and a confusion matrix. </sec> <sec> <title>RESULTS</title> The study was funded by the Chief Scientist Office Scotland as part of a Clinical Research Fellowship that runs from August 2021 to August 2024. Approval from the North Node Privacy Advisory Committee was confirmed on October 13, 2021. Data collection started in May 2022, with the results expected to be published in the first quarter of 2024. ISRCTN registration has been completed. </sec> <sec> <title>CONCLUSIONS</title> This project provides a first step toward delivering an automated solution for arthroplasty selection using routinely collected health care data. Following appropriate external validation and clinical testing, this project could substantially improve the proportion of referred patients that are selected to undergo surgery, with a subsequent reduction in waiting time for arthroplasty appointments. </sec> <sec> <title>CLINICALTRIAL</title> ISRCTN Registry ISRCTN18398037; https://www.isrctn.com/ISRCTN18398037 </sec> <sec> <title>INTERNATIONAL REGISTERED REPORT</title> PRR1-10.2196/37092 </sec>" @default.
- W4280491334 created "2022-05-22" @default.
- W4280491334 creator A5008426408 @default.
- W4280491334 creator A5020082868 @default.
- W4280491334 creator A5028128625 @default.
- W4280491334 creator A5064545845 @default.
- W4280491334 date "2022-02-07" @default.
- W4280491334 modified "2023-09-27" @default.
- W4280491334 title "Using Artificial Intelligence to Revolutionise the Patient Care Pathway in Hip and Knee Arthroplasty (ARCHERY): Protocol for the Development of a Clinical Prediction Model (Preprint)" @default.
- W4280491334 cites W2000534733 @default.
- W4280491334 cites W2052643851 @default.
- W4280491334 cites W2158631078 @default.
- W4280491334 cites W2166198581 @default.
- W4280491334 cites W2194388361 @default.
- W4280491334 cites W2493586185 @default.
- W4280491334 cites W2795443518 @default.
- W4280491334 cites W2797432413 @default.
- W4280491334 cites W2952617329 @default.
- W4280491334 cites W2965945945 @default.
- W4280491334 cites W3007794765 @default.
- W4280491334 cites W3012413426 @default.
- W4280491334 cites W3013626320 @default.
- W4280491334 cites W3180959755 @default.
- W4280491334 doi "https://doi.org/10.2196/preprints.37092" @default.
- W4280491334 hasPublicationYear "2022" @default.
- W4280491334 type Work @default.
- W4280491334 citedByCount "0" @default.
- W4280491334 crossrefType "posted-content" @default.
- W4280491334 hasAuthorship W4280491334A5008426408 @default.
- W4280491334 hasAuthorship W4280491334A5020082868 @default.
- W4280491334 hasAuthorship W4280491334A5028128625 @default.
- W4280491334 hasAuthorship W4280491334A5064545845 @default.
- W4280491334 hasBestOaLocation W42804913342 @default.
- W4280491334 hasConcept C126322002 @default.
- W4280491334 hasConcept C141071460 @default.
- W4280491334 hasConcept C142724271 @default.
- W4280491334 hasConcept C1862650 @default.
- W4280491334 hasConcept C204787440 @default.
- W4280491334 hasConcept C2776135927 @default.
- W4280491334 hasConcept C2776164576 @default.
- W4280491334 hasConcept C2778104916 @default.
- W4280491334 hasConcept C2778336525 @default.
- W4280491334 hasConcept C2908647359 @default.
- W4280491334 hasConcept C512399662 @default.
- W4280491334 hasConcept C71924100 @default.
- W4280491334 hasConcept C72563966 @default.
- W4280491334 hasConcept C99454951 @default.
- W4280491334 hasConceptScore W4280491334C126322002 @default.
- W4280491334 hasConceptScore W4280491334C141071460 @default.
- W4280491334 hasConceptScore W4280491334C142724271 @default.
- W4280491334 hasConceptScore W4280491334C1862650 @default.
- W4280491334 hasConceptScore W4280491334C204787440 @default.
- W4280491334 hasConceptScore W4280491334C2776135927 @default.
- W4280491334 hasConceptScore W4280491334C2776164576 @default.
- W4280491334 hasConceptScore W4280491334C2778104916 @default.
- W4280491334 hasConceptScore W4280491334C2778336525 @default.
- W4280491334 hasConceptScore W4280491334C2908647359 @default.
- W4280491334 hasConceptScore W4280491334C512399662 @default.
- W4280491334 hasConceptScore W4280491334C71924100 @default.
- W4280491334 hasConceptScore W4280491334C72563966 @default.
- W4280491334 hasConceptScore W4280491334C99454951 @default.
- W4280491334 hasLocation W42804913341 @default.
- W4280491334 hasLocation W42804913342 @default.
- W4280491334 hasOpenAccess W4280491334 @default.
- W4280491334 hasPrimaryLocation W42804913341 @default.
- W4280491334 hasRelatedWork W1135326970 @default.
- W4280491334 hasRelatedWork W1984915052 @default.
- W4280491334 hasRelatedWork W2054856593 @default.
- W4280491334 hasRelatedWork W2065050985 @default.
- W4280491334 hasRelatedWork W2328951796 @default.
- W4280491334 hasRelatedWork W2410102613 @default.
- W4280491334 hasRelatedWork W2559652241 @default.
- W4280491334 hasRelatedWork W2613064683 @default.
- W4280491334 hasRelatedWork W3011171242 @default.
- W4280491334 hasRelatedWork W3019185484 @default.
- W4280491334 isParatext "false" @default.
- W4280491334 isRetracted "false" @default.
- W4280491334 workType "article" @default.