Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280491559> ?p ?o ?g. }
- W4280491559 endingPage "626" @default.
- W4280491559 startingPage "608" @default.
- W4280491559 abstract "The market demand and customer preference toward natural colorants are rapidly increasing for better environment and health. Systems metabolic engineering allows development of microbial cell factories capable of efficiently producing natural colorants from renewable resources. Metabolic engineering strategies, including flux and pathway optimization, high-throughput screening, substrate channeling, enzyme/membrane/lipid engineering, and process optimization, are employed for developing strains producing natural colorants. Combinatorial expression of pathway genes, the use of promiscuous enzymes, and directed evolution of key enzymes enable production of diversified natural colorants with enhanced properties. Advances in tools and strategies of enzyme discovery and engineering will contribute to the production of diverse natural colorants and their derivatives. Synthetic colorants have predominated over natural colorants mainly due to their relatively more stable color, larger synthesis scale, and lower manufacturing costs. However, the environmental and health impacts arising from the excess use of these chemicals have brought up increasing demand for natural colorants. Recent advances in microbial metabolic engineering are enabling an increasing number of natural colorants to be manufactured at large scale in a greener and sustainable manner. In this paper, we review the metabolic engineering tools and strategies employed for the microbial production of natural colorants and their derivatives, focusing on the enhanced production of major natural colorants and diversification of natural colorants with more desirable physicochemical properties. Future prospects and challenges are also discussed. Synthetic colorants have predominated over natural colorants mainly due to their relatively more stable color, larger synthesis scale, and lower manufacturing costs. However, the environmental and health impacts arising from the excess use of these chemicals have brought up increasing demand for natural colorants. Recent advances in microbial metabolic engineering are enabling an increasing number of natural colorants to be manufactured at large scale in a greener and sustainable manner. In this paper, we review the metabolic engineering tools and strategies employed for the microbial production of natural colorants and their derivatives, focusing on the enhanced production of major natural colorants and diversification of natural colorants with more desirable physicochemical properties. Future prospects and challenges are also discussed. a clustered group of multiple genes that are together involved in a specific biosynthetic pathway of a secondary metabolite. a fermentation strategy to produce a desired compound by culturing multiple microbial strains, sometimes each harboring different portions of the biosynthetic pathways. an RNA-guided gene expression knockdown tool that employs the catalytically dead Cas9 (dCas9) protein to inhibit target gene transcription. a process of performing multiple rounds of mutation and screening to isolate enzymes with desired activity or characteristics. an in silico technique to predict the best matching binding mode of a ligand to a protein. a strategy to predict the structure of a query protein using the already reported crystal structure of a template protein, which shows high sequence similarity to the query protein. intracellular globular membranous structures formed by the protrusion of bacterial inner membrane layer. colorants derived from natural resources. extracellular globular membranous structures formed by the protrusion of bacterial outer membrane layer, which can also be secreted to the culture medium. enzymes that have the activities to catalyze other reactions beyond its main one. a strategy employed to efficiently streamline the metabolic flux from a substrate to a product while minimizing the accumulation of intermediates. a cross-coupling Pd-catalyzed organic reaction where the coupling partners are a boronic acid and an organohalide for the creation of carbon-carbon bonds. artificially synthesized chemicals exhibiting colors, often produced from petroleum-based chemicals. a target gene knockdown tool employing a target-specific noncoding small RNA and a Hfq protein that together block translation of the target gene. an integrative field of study that integrates systems biology, synthetic biology, and evolutionary engineering with the traditional metabolic engineering. enzymes that are used to attach functional groups to target chemicals." @default.
- W4280491559 created "2022-05-22" @default.
- W4280491559 creator A5006602557 @default.
- W4280491559 creator A5008430104 @default.
- W4280491559 creator A5029855494 @default.
- W4280491559 creator A5060772623 @default.
- W4280491559 creator A5060930815 @default.
- W4280491559 creator A5088331883 @default.
- W4280491559 creator A5088822803 @default.
- W4280491559 date "2022-07-01" @default.
- W4280491559 modified "2023-10-16" @default.
- W4280491559 title "Production of natural colorants by metabolically engineered microorganisms" @default.
- W4280491559 cites W2015553352 @default.
- W4280491559 cites W2019977198 @default.
- W4280491559 cites W2039402116 @default.
- W4280491559 cites W2045763602 @default.
- W4280491559 cites W2060782384 @default.
- W4280491559 cites W2067626772 @default.
- W4280491559 cites W2078164086 @default.
- W4280491559 cites W2079244604 @default.
- W4280491559 cites W2097685675 @default.
- W4280491559 cites W2103213555 @default.
- W4280491559 cites W2109763923 @default.
- W4280491559 cites W2131304252 @default.
- W4280491559 cites W2146698558 @default.
- W4280491559 cites W2151581834 @default.
- W4280491559 cites W2174665123 @default.
- W4280491559 cites W2187650526 @default.
- W4280491559 cites W2402262832 @default.
- W4280491559 cites W2420234300 @default.
- W4280491559 cites W2478267795 @default.
- W4280491559 cites W2512227670 @default.
- W4280491559 cites W2520409084 @default.
- W4280491559 cites W2578812770 @default.
- W4280491559 cites W2579839460 @default.
- W4280491559 cites W2586973670 @default.
- W4280491559 cites W2606736518 @default.
- W4280491559 cites W2615534223 @default.
- W4280491559 cites W2624602624 @default.
- W4280491559 cites W2625702416 @default.
- W4280491559 cites W2734263621 @default.
- W4280491559 cites W2738089584 @default.
- W4280491559 cites W2766838736 @default.
- W4280491559 cites W2771250426 @default.
- W4280491559 cites W2782162157 @default.
- W4280491559 cites W2782952776 @default.
- W4280491559 cites W2783523019 @default.
- W4280491559 cites W2792470984 @default.
- W4280491559 cites W2799756983 @default.
- W4280491559 cites W2886079965 @default.
- W4280491559 cites W2888982982 @default.
- W4280491559 cites W2889665009 @default.
- W4280491559 cites W2889703720 @default.
- W4280491559 cites W2900598666 @default.
- W4280491559 cites W2901121611 @default.
- W4280491559 cites W2908479500 @default.
- W4280491559 cites W2909280598 @default.
- W4280491559 cites W2911459582 @default.
- W4280491559 cites W2912030589 @default.
- W4280491559 cites W2912479692 @default.
- W4280491559 cites W2921792933 @default.
- W4280491559 cites W2938901849 @default.
- W4280491559 cites W2939772093 @default.
- W4280491559 cites W2940145038 @default.
- W4280491559 cites W2942829220 @default.
- W4280491559 cites W2943858683 @default.
- W4280491559 cites W2945456477 @default.
- W4280491559 cites W2945977238 @default.
- W4280491559 cites W2973533038 @default.
- W4280491559 cites W2984967413 @default.
- W4280491559 cites W3000375708 @default.
- W4280491559 cites W3003304853 @default.
- W4280491559 cites W3004670222 @default.
- W4280491559 cites W3021706880 @default.
- W4280491559 cites W3034592228 @default.
- W4280491559 cites W3041882724 @default.
- W4280491559 cites W3083215887 @default.
- W4280491559 cites W3095180119 @default.
- W4280491559 cites W3104596207 @default.
- W4280491559 cites W3119018246 @default.
- W4280491559 cites W3119154557 @default.
- W4280491559 cites W3149167195 @default.
- W4280491559 cites W3149184272 @default.
- W4280491559 cites W3149451154 @default.
- W4280491559 cites W3153857353 @default.
- W4280491559 cites W3164670869 @default.
- W4280491559 cites W3173400668 @default.
- W4280491559 cites W3190176836 @default.
- W4280491559 cites W3194371877 @default.
- W4280491559 cites W3205614306 @default.
- W4280491559 cites W3206523990 @default.
- W4280491559 cites W3214034513 @default.
- W4280491559 cites W3217439684 @default.
- W4280491559 cites W4200052861 @default.
- W4280491559 cites W4211196614 @default.
- W4280491559 doi "https://doi.org/10.1016/j.trechm.2022.04.009" @default.
- W4280491559 hasPublicationYear "2022" @default.
- W4280491559 type Work @default.