Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280491844> ?p ?o ?g. }
- W4280491844 abstract "Accurately forecasting wind and solar power output poses challenges for deeply decarbonized electricity systems. Grid operators must commit resources to provide reserves to ensure reliable operations in the face of forecast errors, a process which can increase fuel consumption and emissions. We apply neural network-based machine learning to expand the usefulness of median point forecast data by creating probabilistic distributions of short-term uncertainty in demand, wind, and solar forecasts that adapt to prevailing grid conditions. Machine learning derived estimates of forecast errors compare favorably to estimates based on incumbent methods. Reserves derived from machine learning are usually smaller than values derived using incumbent methods, which enables fuel savings during most hours. Machine learning reserves are generally larger than incumbent reserves during times of higher forecast error, potentially improving system reliability. Performance is tested using multistage production simulation modeling of the California Independent System Operator system. Machine learning reserves provide production cost and greenhouse gas (GHG) emission reductions of approximately 0.3% relative to historical 2019 requirements. Savings in the 2030 timeframe are highly dependent on battery storage capacity. At lower levels of battery capacity, savings of 0.4% from machine learning reserves are shown. Significant quantities of battery storage are expected to be added to meet California's resource adequacy needs and GHG reduction targets. The addition of these batteries saturates reserve needs and results in minimal within-hour balancing costs in 2030." @default.
- W4280491844 created "2022-05-22" @default.
- W4280491844 creator A5006428375 @default.
- W4280491844 creator A5010086597 @default.
- W4280491844 creator A5011360169 @default.
- W4280491844 creator A5038709647 @default.
- W4280491844 creator A5043737995 @default.
- W4280491844 creator A5048110660 @default.
- W4280491844 creator A5055932676 @default.
- W4280491844 creator A5066461052 @default.
- W4280491844 creator A5088233479 @default.
- W4280491844 creator A5088932367 @default.
- W4280491844 date "2022-05-01" @default.
- W4280491844 modified "2023-10-01" @default.
- W4280491844 title "Machine learning derived dynamic operating reserve requirements in high-renewable power systems" @default.
- W4280491844 cites W2075152505 @default.
- W4280491844 cites W2079679946 @default.
- W4280491844 cites W2132477882 @default.
- W4280491844 cites W2227008663 @default.
- W4280491844 cites W2343702657 @default.
- W4280491844 cites W2729955227 @default.
- W4280491844 cites W2763186835 @default.
- W4280491844 cites W2802476978 @default.
- W4280491844 cites W2808549480 @default.
- W4280491844 cites W2896464186 @default.
- W4280491844 cites W2896853087 @default.
- W4280491844 cites W3092554970 @default.
- W4280491844 cites W3125690394 @default.
- W4280491844 cites W3158602913 @default.
- W4280491844 cites W3204007603 @default.
- W4280491844 cites W4244368412 @default.
- W4280491844 cites W4248423009 @default.
- W4280491844 doi "https://doi.org/10.1063/5.0087144" @default.
- W4280491844 hasPublicationYear "2022" @default.
- W4280491844 type Work @default.
- W4280491844 citedByCount "3" @default.
- W4280491844 countsByYear W42804918442022 @default.
- W4280491844 countsByYear W42804918442023 @default.
- W4280491844 crossrefType "journal-article" @default.
- W4280491844 hasAuthorship W4280491844A5006428375 @default.
- W4280491844 hasAuthorship W4280491844A5010086597 @default.
- W4280491844 hasAuthorship W4280491844A5011360169 @default.
- W4280491844 hasAuthorship W4280491844A5038709647 @default.
- W4280491844 hasAuthorship W4280491844A5043737995 @default.
- W4280491844 hasAuthorship W4280491844A5048110660 @default.
- W4280491844 hasAuthorship W4280491844A5055932676 @default.
- W4280491844 hasAuthorship W4280491844A5066461052 @default.
- W4280491844 hasAuthorship W4280491844A5088233479 @default.
- W4280491844 hasAuthorship W4280491844A5088932367 @default.
- W4280491844 hasBestOaLocation W42804918441 @default.
- W4280491844 hasConcept C119599485 @default.
- W4280491844 hasConcept C121332964 @default.
- W4280491844 hasConcept C127413603 @default.
- W4280491844 hasConcept C154945302 @default.
- W4280491844 hasConcept C163258240 @default.
- W4280491844 hasConcept C171146098 @default.
- W4280491844 hasConcept C187691185 @default.
- W4280491844 hasConcept C188573790 @default.
- W4280491844 hasConcept C18903297 @default.
- W4280491844 hasConcept C200601418 @default.
- W4280491844 hasConcept C2524010 @default.
- W4280491844 hasConcept C33923547 @default.
- W4280491844 hasConcept C41008148 @default.
- W4280491844 hasConcept C44154836 @default.
- W4280491844 hasConcept C47737302 @default.
- W4280491844 hasConcept C49937458 @default.
- W4280491844 hasConcept C62520636 @default.
- W4280491844 hasConcept C78600449 @default.
- W4280491844 hasConcept C86803240 @default.
- W4280491844 hasConcept C89227174 @default.
- W4280491844 hasConceptScore W4280491844C119599485 @default.
- W4280491844 hasConceptScore W4280491844C121332964 @default.
- W4280491844 hasConceptScore W4280491844C127413603 @default.
- W4280491844 hasConceptScore W4280491844C154945302 @default.
- W4280491844 hasConceptScore W4280491844C163258240 @default.
- W4280491844 hasConceptScore W4280491844C171146098 @default.
- W4280491844 hasConceptScore W4280491844C187691185 @default.
- W4280491844 hasConceptScore W4280491844C188573790 @default.
- W4280491844 hasConceptScore W4280491844C18903297 @default.
- W4280491844 hasConceptScore W4280491844C200601418 @default.
- W4280491844 hasConceptScore W4280491844C2524010 @default.
- W4280491844 hasConceptScore W4280491844C33923547 @default.
- W4280491844 hasConceptScore W4280491844C41008148 @default.
- W4280491844 hasConceptScore W4280491844C44154836 @default.
- W4280491844 hasConceptScore W4280491844C47737302 @default.
- W4280491844 hasConceptScore W4280491844C49937458 @default.
- W4280491844 hasConceptScore W4280491844C62520636 @default.
- W4280491844 hasConceptScore W4280491844C78600449 @default.
- W4280491844 hasConceptScore W4280491844C86803240 @default.
- W4280491844 hasConceptScore W4280491844C89227174 @default.
- W4280491844 hasFunder F4320332276 @default.
- W4280491844 hasIssue "3" @default.
- W4280491844 hasLocation W42804918441 @default.
- W4280491844 hasLocation W42804918442 @default.
- W4280491844 hasLocation W42804918443 @default.
- W4280491844 hasOpenAccess W4280491844 @default.
- W4280491844 hasPrimaryLocation W42804918441 @default.
- W4280491844 hasRelatedWork W1557887524 @default.
- W4280491844 hasRelatedWork W1660375494 @default.
- W4280491844 hasRelatedWork W1998918607 @default.