Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280491870> ?p ?o ?g. }
- W4280491870 endingPage "183956" @default.
- W4280491870 startingPage "183956" @default.
- W4280491870 abstract "Ligand-Gated Ion Channels (LGICs) is one of the largest groups of transmembrane proteins. Due to their major role in synaptic transmission, both in the nervous system and the somatic neuromuscular junction, LGICs present attractive therapeutic targets. During the last few years, several computational methods for the detection of LGICs have been developed. These methods are based on machine learning approaches utilizing features extracted solely from the amino acid composition. Here we report the development of LiGIoNs, a profile Hidden Markov Model (pHMM) method for the prediction and ligand-based classification of LGICs. The method consists of a library of 10 pHMMs, one per LGIC subfamily, built from the alignment of representative LGIC sequences. In addition, 14 Pfam pHMMs are used to further annotate and classify unknown protein sequences into one of the 10 LGIC subfamilies. Evaluation of the method showed that it outperforms existing methods in the detection of LGICs. On top of that, LiGIoNs is the only currently available method that classifies LGICs into subfamilies. The method is available online at http://bioinformatics.biol.uoa.gr/ligions/." @default.
- W4280491870 created "2022-05-22" @default.
- W4280491870 creator A5004956149 @default.
- W4280491870 creator A5022408330 @default.
- W4280491870 creator A5026049213 @default.
- W4280491870 creator A5083458193 @default.
- W4280491870 creator A5091436170 @default.
- W4280491870 date "2022-09-01" @default.
- W4280491870 modified "2023-10-13" @default.
- W4280491870 title "LiGIoNs: A computational method for the detection and classification of ligand-gated ion channels" @default.
- W4280491870 cites W1487658493 @default.
- W4280491870 cites W1557041093 @default.
- W4280491870 cites W1966656460 @default.
- W4280491870 cites W1967225412 @default.
- W4280491870 cites W1968639536 @default.
- W4280491870 cites W1968682237 @default.
- W4280491870 cites W1983504852 @default.
- W4280491870 cites W1996481354 @default.
- W4280491870 cites W1997483502 @default.
- W4280491870 cites W2000733439 @default.
- W4280491870 cites W2004164502 @default.
- W4280491870 cites W2011570269 @default.
- W4280491870 cites W2016498619 @default.
- W4280491870 cites W2024217354 @default.
- W4280491870 cites W2027102545 @default.
- W4280491870 cites W2046027415 @default.
- W4280491870 cites W2062162317 @default.
- W4280491870 cites W2064620468 @default.
- W4280491870 cites W2084167390 @default.
- W4280491870 cites W2084236159 @default.
- W4280491870 cites W2084690259 @default.
- W4280491870 cites W2086812703 @default.
- W4280491870 cites W2088117005 @default.
- W4280491870 cites W2096293984 @default.
- W4280491870 cites W2097606916 @default.
- W4280491870 cites W2103106361 @default.
- W4280491870 cites W2108588173 @default.
- W4280491870 cites W2133670086 @default.
- W4280491870 cites W2147526198 @default.
- W4280491870 cites W2148770445 @default.
- W4280491870 cites W2149506965 @default.
- W4280491870 cites W2152770371 @default.
- W4280491870 cites W2156125289 @default.
- W4280491870 cites W2170505850 @default.
- W4280491870 cites W2172010590 @default.
- W4280491870 cites W2227999806 @default.
- W4280491870 cites W2263404173 @default.
- W4280491870 cites W2301973105 @default.
- W4280491870 cites W2483776236 @default.
- W4280491870 cites W2606631998 @default.
- W4280491870 cites W2745811851 @default.
- W4280491870 cites W2918063357 @default.
- W4280491870 cites W2919756742 @default.
- W4280491870 cites W2943517614 @default.
- W4280491870 cites W3033505940 @default.
- W4280491870 cites W3111995113 @default.
- W4280491870 cites W4233120011 @default.
- W4280491870 cites W4237809070 @default.
- W4280491870 cites W968198473 @default.
- W4280491870 doi "https://doi.org/10.1016/j.bbamem.2022.183956" @default.
- W4280491870 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35577076" @default.
- W4280491870 hasPublicationYear "2022" @default.
- W4280491870 type Work @default.
- W4280491870 citedByCount "1" @default.
- W4280491870 countsByYear W42804918702022 @default.
- W4280491870 crossrefType "journal-article" @default.
- W4280491870 hasAuthorship W4280491870A5004956149 @default.
- W4280491870 hasAuthorship W4280491870A5022408330 @default.
- W4280491870 hasAuthorship W4280491870A5026049213 @default.
- W4280491870 hasAuthorship W4280491870A5083458193 @default.
- W4280491870 hasAuthorship W4280491870A5091436170 @default.
- W4280491870 hasBestOaLocation W42804918701 @default.
- W4280491870 hasConcept C104317684 @default.
- W4280491870 hasConcept C119857082 @default.
- W4280491870 hasConcept C153180895 @default.
- W4280491870 hasConcept C154945302 @default.
- W4280491870 hasConcept C170493617 @default.
- W4280491870 hasConcept C23224414 @default.
- W4280491870 hasConcept C24530287 @default.
- W4280491870 hasConcept C41008148 @default.
- W4280491870 hasConcept C50929876 @default.
- W4280491870 hasConcept C54355233 @default.
- W4280491870 hasConcept C70721500 @default.
- W4280491870 hasConcept C86803240 @default.
- W4280491870 hasConceptScore W4280491870C104317684 @default.
- W4280491870 hasConceptScore W4280491870C119857082 @default.
- W4280491870 hasConceptScore W4280491870C153180895 @default.
- W4280491870 hasConceptScore W4280491870C154945302 @default.
- W4280491870 hasConceptScore W4280491870C170493617 @default.
- W4280491870 hasConceptScore W4280491870C23224414 @default.
- W4280491870 hasConceptScore W4280491870C24530287 @default.
- W4280491870 hasConceptScore W4280491870C41008148 @default.
- W4280491870 hasConceptScore W4280491870C50929876 @default.
- W4280491870 hasConceptScore W4280491870C54355233 @default.
- W4280491870 hasConceptScore W4280491870C70721500 @default.
- W4280491870 hasConceptScore W4280491870C86803240 @default.
- W4280491870 hasFunder F4320323149 @default.
- W4280491870 hasIssue "9" @default.