Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280492380> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4280492380 endingPage "105603" @default.
- W4280492380 startingPage "105603" @default.
- W4280492380 abstract "Deep learning has made great progress in analyzing MRI data, while the MRI data with high dimensional but small sample size (HDSSS) brings many limitations to biomarkers identification. Few-shot learning has been proposed to solve such problems and data augmentation is a typical method of it. The variational auto-encoder (VAE) is a generative method based on variational Bayesian inference that is used for data augmentation. Graph regularized sparse deep autoencoder (GSDAE) can reconstruct sparse samples and keep the manifold structure of data which will facilitate biomarkers selection greatly. To generate better HDSSS data for biomarkers identification, a data augmentation method based on VAE and GSDAE is proposed in this paper, termed GS-VDAE. Instead of utilizing the final products of GSDAE, our proposed model embeds the generation procedure into GSDAE for augmentation. In this way, the augmented samples will be rooted in the significant features extracted from the original samples, which can ensure the newly formed samples contain the most significant characteristics of the original samples. The classification accuracy of the samples generated directly from VAE is 0.74, while the classification accuracy of the samples generated from GS-VDAE is 0.84, which proves the validity of our model. Additionally, a regression feature selection method with truncated nuclear norm regularization is chosen for biomarkers selection. The biomarkers selection results of schizophrenia data reveal that the augmented samples obtained by our proposed method can get higher classification accuracy with less ranked features compared with original samples, which proves the validation of our model." @default.
- W4280492380 created "2022-05-22" @default.
- W4280492380 creator A5016525205 @default.
- W4280492380 creator A5042398849 @default.
- W4280492380 creator A5051754668 @default.
- W4280492380 creator A5052292010 @default.
- W4280492380 creator A5077129953 @default.
- W4280492380 date "2022-07-01" @default.
- W4280492380 modified "2023-10-18" @default.
- W4280492380 title "Biomarkers identification for Schizophrenia via VAE and GSDAE-based data augmentation" @default.
- W4280492380 cites W1792691616 @default.
- W4280492380 cites W1968174734 @default.
- W4280492380 cites W1969698720 @default.
- W4280492380 cites W2154053567 @default.
- W4280492380 cites W2410350689 @default.
- W4280492380 cites W2594857575 @default.
- W4280492380 cites W2626806673 @default.
- W4280492380 cites W2738743274 @default.
- W4280492380 cites W2744872353 @default.
- W4280492380 cites W2767147463 @default.
- W4280492380 cites W2790418176 @default.
- W4280492380 cites W2888334710 @default.
- W4280492380 cites W2927253441 @default.
- W4280492380 cites W2947537769 @default.
- W4280492380 cites W2950953090 @default.
- W4280492380 cites W2963303578 @default.
- W4280492380 cites W3028328997 @default.
- W4280492380 cites W3040855861 @default.
- W4280492380 cites W3134023819 @default.
- W4280492380 cites W3159694633 @default.
- W4280492380 cites W3172943905 @default.
- W4280492380 cites W3175908781 @default.
- W4280492380 cites W3186249161 @default.
- W4280492380 cites W3196434404 @default.
- W4280492380 cites W4206730042 @default.
- W4280492380 cites W4206806040 @default.
- W4280492380 doi "https://doi.org/10.1016/j.compbiomed.2022.105603" @default.
- W4280492380 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35588680" @default.
- W4280492380 hasPublicationYear "2022" @default.
- W4280492380 type Work @default.
- W4280492380 citedByCount "2" @default.
- W4280492380 countsByYear W42804923802023 @default.
- W4280492380 crossrefType "journal-article" @default.
- W4280492380 hasAuthorship W4280492380A5016525205 @default.
- W4280492380 hasAuthorship W4280492380A5042398849 @default.
- W4280492380 hasAuthorship W4280492380A5051754668 @default.
- W4280492380 hasAuthorship W4280492380A5052292010 @default.
- W4280492380 hasAuthorship W4280492380A5077129953 @default.
- W4280492380 hasConcept C101738243 @default.
- W4280492380 hasConcept C108583219 @default.
- W4280492380 hasConcept C116834253 @default.
- W4280492380 hasConcept C119857082 @default.
- W4280492380 hasConcept C124101348 @default.
- W4280492380 hasConcept C148483581 @default.
- W4280492380 hasConcept C153180895 @default.
- W4280492380 hasConcept C154945302 @default.
- W4280492380 hasConcept C167966045 @default.
- W4280492380 hasConcept C2776135515 @default.
- W4280492380 hasConcept C2776214188 @default.
- W4280492380 hasConcept C39890363 @default.
- W4280492380 hasConcept C41008148 @default.
- W4280492380 hasConcept C59822182 @default.
- W4280492380 hasConcept C86803240 @default.
- W4280492380 hasConcept C93959086 @default.
- W4280492380 hasConceptScore W4280492380C101738243 @default.
- W4280492380 hasConceptScore W4280492380C108583219 @default.
- W4280492380 hasConceptScore W4280492380C116834253 @default.
- W4280492380 hasConceptScore W4280492380C119857082 @default.
- W4280492380 hasConceptScore W4280492380C124101348 @default.
- W4280492380 hasConceptScore W4280492380C148483581 @default.
- W4280492380 hasConceptScore W4280492380C153180895 @default.
- W4280492380 hasConceptScore W4280492380C154945302 @default.
- W4280492380 hasConceptScore W4280492380C167966045 @default.
- W4280492380 hasConceptScore W4280492380C2776135515 @default.
- W4280492380 hasConceptScore W4280492380C2776214188 @default.
- W4280492380 hasConceptScore W4280492380C39890363 @default.
- W4280492380 hasConceptScore W4280492380C41008148 @default.
- W4280492380 hasConceptScore W4280492380C59822182 @default.
- W4280492380 hasConceptScore W4280492380C86803240 @default.
- W4280492380 hasConceptScore W4280492380C93959086 @default.
- W4280492380 hasLocation W42804923801 @default.
- W4280492380 hasLocation W42804923802 @default.
- W4280492380 hasOpenAccess W4280492380 @default.
- W4280492380 hasPrimaryLocation W42804923801 @default.
- W4280492380 hasRelatedWork W2527569769 @default.
- W4280492380 hasRelatedWork W2592385986 @default.
- W4280492380 hasRelatedWork W2922457425 @default.
- W4280492380 hasRelatedWork W2963058055 @default.
- W4280492380 hasRelatedWork W3044458868 @default.
- W4280492380 hasRelatedWork W4213225422 @default.
- W4280492380 hasRelatedWork W4220775285 @default.
- W4280492380 hasRelatedWork W4250304930 @default.
- W4280492380 hasRelatedWork W4289656111 @default.
- W4280492380 hasRelatedWork W4292318865 @default.
- W4280492380 hasVolume "146" @default.
- W4280492380 isParatext "false" @default.
- W4280492380 isRetracted "false" @default.
- W4280492380 workType "article" @default.