Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280492396> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4280492396 abstract "Major depressive disorder (MDD) requires study of brain functional connectivity alterations for patients, which can be uncovered by resting-state functional magnetic resonance imaging (rs-fMRI) data. We consider the problem of identifying alterations of brain functional connectivity for a single MDD patient. This is particularly difficult since the amount of data collected during an fMRI scan is too limited to provide sufficient information for individual analysis. Additionally, rs-fMRI data usually has the characteristics of incompleteness, sparsity, variability, high dimensionality and high noise. To address these problems, we proposed a multitask Gaussian Bayesian network (MTGBN) framework capable for identifying individual disease-induced alterations for MDD patients. We assume that such disease-induced alterations show some degrees of similarity with the tool to learn such network structures from observations to understanding of how system are structured jointly from related tasks. First, we treat each patient in a class of observation as a task and then learn the Gaussian Bayesian networks (GBNs) of this data class by learning from all tasks that share a default covariance matrix that encodes prior knowledge. This setting can help us to learn more information from limited data. Next, we derive a closed-form formula of the complete likelihood function and use the Monte-Carlo Expectation-Maximization(MCEM) algorithm to search for the approximately best Bayesian network structures efficiently. Finally, we assess the performance of our methods with simulated and real-world rs-fMRI data." @default.
- W4280492396 created "2022-05-22" @default.
- W4280492396 creator A5002076661 @default.
- W4280492396 creator A5019688153 @default.
- W4280492396 creator A5039257426 @default.
- W4280492396 creator A5066947738 @default.
- W4280492396 creator A5068724396 @default.
- W4280492396 date "2022-05-11" @default.
- W4280492396 modified "2023-09-30" @default.
- W4280492396 title "Learning Multitask Gaussian Bayesian Networks" @default.
- W4280492396 doi "https://doi.org/10.48550/arxiv.2205.05343" @default.
- W4280492396 hasPublicationYear "2022" @default.
- W4280492396 type Work @default.
- W4280492396 citedByCount "0" @default.
- W4280492396 crossrefType "posted-content" @default.
- W4280492396 hasAuthorship W4280492396A5002076661 @default.
- W4280492396 hasAuthorship W4280492396A5019688153 @default.
- W4280492396 hasAuthorship W4280492396A5039257426 @default.
- W4280492396 hasAuthorship W4280492396A5066947738 @default.
- W4280492396 hasAuthorship W4280492396A5068724396 @default.
- W4280492396 hasBestOaLocation W42804923961 @default.
- W4280492396 hasConcept C107673813 @default.
- W4280492396 hasConcept C111030470 @default.
- W4280492396 hasConcept C119857082 @default.
- W4280492396 hasConcept C121332964 @default.
- W4280492396 hasConcept C153180895 @default.
- W4280492396 hasConcept C154945302 @default.
- W4280492396 hasConcept C15744967 @default.
- W4280492396 hasConcept C163716315 @default.
- W4280492396 hasConcept C169760540 @default.
- W4280492396 hasConcept C2779226451 @default.
- W4280492396 hasConcept C33724603 @default.
- W4280492396 hasConcept C41008148 @default.
- W4280492396 hasConcept C62520636 @default.
- W4280492396 hasConcept C66324658 @default.
- W4280492396 hasConceptScore W4280492396C107673813 @default.
- W4280492396 hasConceptScore W4280492396C111030470 @default.
- W4280492396 hasConceptScore W4280492396C119857082 @default.
- W4280492396 hasConceptScore W4280492396C121332964 @default.
- W4280492396 hasConceptScore W4280492396C153180895 @default.
- W4280492396 hasConceptScore W4280492396C154945302 @default.
- W4280492396 hasConceptScore W4280492396C15744967 @default.
- W4280492396 hasConceptScore W4280492396C163716315 @default.
- W4280492396 hasConceptScore W4280492396C169760540 @default.
- W4280492396 hasConceptScore W4280492396C2779226451 @default.
- W4280492396 hasConceptScore W4280492396C33724603 @default.
- W4280492396 hasConceptScore W4280492396C41008148 @default.
- W4280492396 hasConceptScore W4280492396C62520636 @default.
- W4280492396 hasConceptScore W4280492396C66324658 @default.
- W4280492396 hasLocation W42804923961 @default.
- W4280492396 hasLocation W42804923962 @default.
- W4280492396 hasOpenAccess W4280492396 @default.
- W4280492396 hasPrimaryLocation W42804923961 @default.
- W4280492396 hasRelatedWork W2168298321 @default.
- W4280492396 hasRelatedWork W2387620927 @default.
- W4280492396 hasRelatedWork W2601707947 @default.
- W4280492396 hasRelatedWork W2961085424 @default.
- W4280492396 hasRelatedWork W3095983064 @default.
- W4280492396 hasRelatedWork W4286629047 @default.
- W4280492396 hasRelatedWork W4306321456 @default.
- W4280492396 hasRelatedWork W4306674287 @default.
- W4280492396 hasRelatedWork W4385957992 @default.
- W4280492396 hasRelatedWork W4224009465 @default.
- W4280492396 isParatext "false" @default.
- W4280492396 isRetracted "false" @default.
- W4280492396 workType "article" @default.