Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280492403> ?p ?o ?g. }
- W4280492403 abstract "Due to advances in computing power and internet technology, various industrial sectors are adopting IT infrastructure and artificial intelligence (AI) technologies. Recently, data-driven predictions have attracted interest in high-stakes decision-making. Despite this, advanced AI methods are less often used for such tasks. This is because AI technology is a black box for the social systems it is meant to support; trustworthiness and fairness have not yet been established. Meanwhile in the field of marketing, strategic decision-making is a high-stakes problem that has a significant impact on business trends. For global marketing, with its diverse cultures and market environments, future decision-making is likely to focus on building consensus on the formulation of the problem itself rather than on solutions for achieving the goal. There are two important and conflicting facts: the fact that the core of domestic strategic decision-making comes down to the formulation of the problem itself, and the fact that it is difficult to realize AI technology that can achieve problem formulation. How can we resolve this difficulty with current technology? This is the main challenge for the realization of high-level human-AI systems in the marketing field. Thus, we propose customer journey mapping (CJM) automation through model-level data fusion, a process for the practical problem formulation known as explainable alignment. Using domain-specific requirements and observations as inputs, the system automatically outputs a CJM. Explainable alignment corresponds with both human and AI perspectives and in formulating the problem, thereby improving strategic decision-making in marketing. Following preprocessing to make latent variables and their dynamics transparent with latent Dirichlet allocation and a variational autoencoder, a post-hoc explanation is implemented in which a hidden Markov model and learning from an interpretation transition are combined with a long short-term memory architecture that learns sequential data between touchpoints for extracting attitude rules for CJM. Finally, we realize the application of human-AI systems to strategic decision-making in marketing with actual logs in over-the-top media services, in which the dynamic behavior of customers for CJM can be automatically extracted." @default.
- W4280492403 created "2022-05-22" @default.
- W4280492403 creator A5080458729 @default.
- W4280492403 creator A5082892260 @default.
- W4280492403 date "2022-05-11" @default.
- W4280492403 modified "2023-09-30" @default.
- W4280492403 title "Explainable Model Fusion for Customer Journey Mapping" @default.
- W4280492403 cites W1481919380 @default.
- W4280492403 cites W1880262756 @default.
- W4280492403 cites W1888172398 @default.
- W4280492403 cites W1901616594 @default.
- W4280492403 cites W1969547738 @default.
- W4280492403 cites W1973045980 @default.
- W4280492403 cites W2007321142 @default.
- W4280492403 cites W2011418219 @default.
- W4280492403 cites W2014617596 @default.
- W4280492403 cites W2026368892 @default.
- W4280492403 cites W2028527394 @default.
- W4280492403 cites W2079829409 @default.
- W4280492403 cites W2090761873 @default.
- W4280492403 cites W2094227853 @default.
- W4280492403 cites W2105934661 @default.
- W4280492403 cites W2134431678 @default.
- W4280492403 cites W2137126099 @default.
- W4280492403 cites W2143891888 @default.
- W4280492403 cites W2160533336 @default.
- W4280492403 cites W2167266355 @default.
- W4280492403 cites W2282821441 @default.
- W4280492403 cites W2283350629 @default.
- W4280492403 cites W2331940983 @default.
- W4280492403 cites W2422895071 @default.
- W4280492403 cites W2520858206 @default.
- W4280492403 cites W2528491735 @default.
- W4280492403 cites W2531664445 @default.
- W4280492403 cites W2546665280 @default.
- W4280492403 cites W2611370172 @default.
- W4280492403 cites W2746248040 @default.
- W4280492403 cites W2763177976 @default.
- W4280492403 cites W2768522687 @default.
- W4280492403 cites W2786242872 @default.
- W4280492403 cites W2884091296 @default.
- W4280492403 cites W2891503716 @default.
- W4280492403 cites W2896727370 @default.
- W4280492403 cites W2929398094 @default.
- W4280492403 cites W2945976633 @default.
- W4280492403 cites W2946594953 @default.
- W4280492403 cites W2950784811 @default.
- W4280492403 cites W2954503794 @default.
- W4280492403 cites W2962772482 @default.
- W4280492403 cites W2963095307 @default.
- W4280492403 cites W2963847595 @default.
- W4280492403 cites W2965016520 @default.
- W4280492403 cites W2981731882 @default.
- W4280492403 cites W2981836045 @default.
- W4280492403 cites W2987375278 @default.
- W4280492403 cites W2997428643 @default.
- W4280492403 cites W3024801014 @default.
- W4280492403 cites W3116630150 @default.
- W4280492403 cites W3154641953 @default.
- W4280492403 cites W3195968268 @default.
- W4280492403 cites W3205595721 @default.
- W4280492403 cites W4200566087 @default.
- W4280492403 cites W4231057675 @default.
- W4280492403 cites W4244420298 @default.
- W4280492403 cites W4248246100 @default.
- W4280492403 cites W4298871328 @default.
- W4280492403 doi "https://doi.org/10.3389/frai.2022.824197" @default.
- W4280492403 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35647530" @default.
- W4280492403 hasPublicationYear "2022" @default.
- W4280492403 type Work @default.
- W4280492403 citedByCount "2" @default.
- W4280492403 countsByYear W42804924032023 @default.
- W4280492403 crossrefType "journal-article" @default.
- W4280492403 hasAuthorship W4280492403A5080458729 @default.
- W4280492403 hasAuthorship W4280492403A5082892260 @default.
- W4280492403 hasBestOaLocation W42804924031 @default.
- W4280492403 hasConcept C111919701 @default.
- W4280492403 hasConcept C115901376 @default.
- W4280492403 hasConcept C127413603 @default.
- W4280492403 hasConcept C134306372 @default.
- W4280492403 hasConcept C154945302 @default.
- W4280492403 hasConcept C202444582 @default.
- W4280492403 hasConcept C2522767166 @default.
- W4280492403 hasConcept C33923547 @default.
- W4280492403 hasConcept C36503486 @default.
- W4280492403 hasConcept C41008148 @default.
- W4280492403 hasConcept C539667460 @default.
- W4280492403 hasConcept C78519656 @default.
- W4280492403 hasConcept C9652623 @default.
- W4280492403 hasConcept C98045186 @default.
- W4280492403 hasConceptScore W4280492403C111919701 @default.
- W4280492403 hasConceptScore W4280492403C115901376 @default.
- W4280492403 hasConceptScore W4280492403C127413603 @default.
- W4280492403 hasConceptScore W4280492403C134306372 @default.
- W4280492403 hasConceptScore W4280492403C154945302 @default.
- W4280492403 hasConceptScore W4280492403C202444582 @default.
- W4280492403 hasConceptScore W4280492403C2522767166 @default.
- W4280492403 hasConceptScore W4280492403C33923547 @default.
- W4280492403 hasConceptScore W4280492403C36503486 @default.
- W4280492403 hasConceptScore W4280492403C41008148 @default.