Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280492599> ?p ?o ?g. }
- W4280492599 endingPage "275" @default.
- W4280492599 startingPage "275" @default.
- W4280492599 abstract "In this paper, we solve Riccati equations by using the fractional-order hybrid function of block-pulse functions and Bernoulli polynomials (FOHBPB), obtained by replacing x with xα, with positive α. Fractional derivatives are in the Caputo sense. With the help of incomplete beta functions, we are able to build exactly the Riemann–Liouville fractional integral operator associated with FOHBPB. This operator, together with the Newton–Cotes collocation method, allows the reduction of fractional differential equations to a system of algebraic equations, which can be solved by Newton’s iterative method. The simplicity of the method recommends it for applications in engineering and nature. The accuracy of this method is illustrated by five examples, and there are situations in which we obtain accuracy eleven orders of magnitude higher than if α=1." @default.
- W4280492599 created "2022-05-22" @default.
- W4280492599 creator A5004126027 @default.
- W4280492599 creator A5012384671 @default.
- W4280492599 creator A5075205392 @default.
- W4280492599 date "2022-05-20" @default.
- W4280492599 modified "2023-09-25" @default.
- W4280492599 title "Enhancing the Accuracy of Solving Riccati Fractional Differential Equations" @default.
- W4280492599 cites W1969950423 @default.
- W4280492599 cites W1970886340 @default.
- W4280492599 cites W1971075293 @default.
- W4280492599 cites W1985438383 @default.
- W4280492599 cites W1994821936 @default.
- W4280492599 cites W1994916853 @default.
- W4280492599 cites W1999870282 @default.
- W4280492599 cites W2004531333 @default.
- W4280492599 cites W2011034718 @default.
- W4280492599 cites W2019294216 @default.
- W4280492599 cites W2019469368 @default.
- W4280492599 cites W2022987610 @default.
- W4280492599 cites W2023153411 @default.
- W4280492599 cites W2024562774 @default.
- W4280492599 cites W2025299547 @default.
- W4280492599 cites W2033598679 @default.
- W4280492599 cites W2037423068 @default.
- W4280492599 cites W2038658936 @default.
- W4280492599 cites W2041875300 @default.
- W4280492599 cites W2042923669 @default.
- W4280492599 cites W2043532630 @default.
- W4280492599 cites W2048618474 @default.
- W4280492599 cites W2054899953 @default.
- W4280492599 cites W2057414857 @default.
- W4280492599 cites W2058330335 @default.
- W4280492599 cites W2059635322 @default.
- W4280492599 cites W2060535431 @default.
- W4280492599 cites W2061498519 @default.
- W4280492599 cites W2071593170 @default.
- W4280492599 cites W2075129909 @default.
- W4280492599 cites W2078643611 @default.
- W4280492599 cites W2081501043 @default.
- W4280492599 cites W2084328059 @default.
- W4280492599 cites W2089714782 @default.
- W4280492599 cites W2094012975 @default.
- W4280492599 cites W2116807840 @default.
- W4280492599 cites W2125296015 @default.
- W4280492599 cites W2127464567 @default.
- W4280492599 cites W2147105743 @default.
- W4280492599 cites W2316109652 @default.
- W4280492599 cites W2389984057 @default.
- W4280492599 cites W2407973543 @default.
- W4280492599 cites W2412352375 @default.
- W4280492599 cites W2486983496 @default.
- W4280492599 cites W2488163810 @default.
- W4280492599 cites W2612836241 @default.
- W4280492599 cites W2742489936 @default.
- W4280492599 cites W2766195651 @default.
- W4280492599 cites W2937107277 @default.
- W4280492599 cites W3193446317 @default.
- W4280492599 cites W4200583955 @default.
- W4280492599 doi "https://doi.org/10.3390/fractalfract6050275" @default.
- W4280492599 hasPublicationYear "2022" @default.
- W4280492599 type Work @default.
- W4280492599 citedByCount "2" @default.
- W4280492599 countsByYear W42804925992022 @default.
- W4280492599 countsByYear W42804925992023 @default.
- W4280492599 crossrefType "journal-article" @default.
- W4280492599 hasAuthorship W4280492599A5004126027 @default.
- W4280492599 hasAuthorship W4280492599A5012384671 @default.
- W4280492599 hasAuthorship W4280492599A5075205392 @default.
- W4280492599 hasBestOaLocation W42804925991 @default.
- W4280492599 hasConcept C104317684 @default.
- W4280492599 hasConcept C119857082 @default.
- W4280492599 hasConcept C121332964 @default.
- W4280492599 hasConcept C134306372 @default.
- W4280492599 hasConcept C13847129 @default.
- W4280492599 hasConcept C154249771 @default.
- W4280492599 hasConcept C158448853 @default.
- W4280492599 hasConcept C158622935 @default.
- W4280492599 hasConcept C17020691 @default.
- W4280492599 hasConcept C185592680 @default.
- W4280492599 hasConcept C2126413 @default.
- W4280492599 hasConcept C23917780 @default.
- W4280492599 hasConcept C28826006 @default.
- W4280492599 hasConcept C33923547 @default.
- W4280492599 hasConcept C41008148 @default.
- W4280492599 hasConcept C45473103 @default.
- W4280492599 hasConcept C51544822 @default.
- W4280492599 hasConcept C55493867 @default.
- W4280492599 hasConcept C62520636 @default.
- W4280492599 hasConcept C78045399 @default.
- W4280492599 hasConcept C80023036 @default.
- W4280492599 hasConcept C86339819 @default.
- W4280492599 hasConceptScore W4280492599C104317684 @default.
- W4280492599 hasConceptScore W4280492599C119857082 @default.
- W4280492599 hasConceptScore W4280492599C121332964 @default.
- W4280492599 hasConceptScore W4280492599C134306372 @default.
- W4280492599 hasConceptScore W4280492599C13847129 @default.
- W4280492599 hasConceptScore W4280492599C154249771 @default.