Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280492827> ?p ?o ?g. }
- W4280492827 endingPage "2693" @default.
- W4280492827 startingPage "2673" @default.
- W4280492827 abstract "Microblogs generate a vast amount of data in which users express their emotions regarding almost all aspects of everyday life. Capturing affective content from these context-dependent and subjective texts is a challenging task. We propose an intelligent probabilistic model for textual emotion recognition in multidimensional space (TERMS) that captures the subjective emotional boundaries and contextual information embedded in a text for robust emotion recognition. It is implausible with discrete label assignment;therefore, the model employs a soft assignment by mapping varying emotional perceptions in a multidimensional space and generates them as distributions via the Gaussian mixture model (GMM). To strengthen emotion distributions, TERMS integrates a probabilistic emotion classifier that captures the contextual and linguistic information from texts. The integration of these aspects, the context-aware emotion classifier and the learned GMM parameters provide a complete coverage for accurate emotion recognition. The large-scale experimentation shows that compared to baseline and state-of-the-art models, TERMS achieved better performance in terms of distinguishability, prediction, and classification performance. In addition, TERMS provide insights on emotion classes, the annotation patterns, and the models application in different scenarios." @default.
- W4280492827 created "2022-05-22" @default.
- W4280492827 creator A5016648929 @default.
- W4280492827 creator A5040265580 @default.
- W4280492827 creator A5044405835 @default.
- W4280492827 creator A5049137171 @default.
- W4280492827 creator A5067980523 @default.
- W4280492827 creator A5074344625 @default.
- W4280492827 date "2022-05-11" @default.
- W4280492827 modified "2023-10-02" @default.
- W4280492827 title "TERMS: textual emotion recognition in multidimensional space" @default.
- W4280492827 cites W17944974 @default.
- W4280492827 cites W1966940075 @default.
- W4280492827 cites W2000031724 @default.
- W4280492827 cites W2023736093 @default.
- W4280492827 cites W2033178790 @default.
- W4280492827 cites W2059224076 @default.
- W4280492827 cites W2077132576 @default.
- W4280492827 cites W2086399953 @default.
- W4280492827 cites W2141517887 @default.
- W4280492827 cites W2143197238 @default.
- W4280492827 cites W2149628368 @default.
- W4280492827 cites W2156191441 @default.
- W4280492827 cites W2171645516 @default.
- W4280492827 cites W2268533710 @default.
- W4280492827 cites W2270941958 @default.
- W4280492827 cites W2339570520 @default.
- W4280492827 cites W2396294578 @default.
- W4280492827 cites W2462290672 @default.
- W4280492827 cites W2520445699 @default.
- W4280492827 cites W2530404395 @default.
- W4280492827 cites W2531945442 @default.
- W4280492827 cites W2582664174 @default.
- W4280492827 cites W2606063593 @default.
- W4280492827 cites W2741036097 @default.
- W4280492827 cites W2741447225 @default.
- W4280492827 cites W2786205708 @default.
- W4280492827 cites W2798357113 @default.
- W4280492827 cites W2805744755 @default.
- W4280492827 cites W2807182824 @default.
- W4280492827 cites W2808079449 @default.
- W4280492827 cites W2861161588 @default.
- W4280492827 cites W2890024344 @default.
- W4280492827 cites W2891575196 @default.
- W4280492827 cites W2900507847 @default.
- W4280492827 cites W2902121240 @default.
- W4280492827 cites W2910504729 @default.
- W4280492827 cites W2916132663 @default.
- W4280492827 cites W2920898473 @default.
- W4280492827 cites W2952622013 @default.
- W4280492827 cites W2963177779 @default.
- W4280492827 cites W2963223838 @default.
- W4280492827 cites W2963662881 @default.
- W4280492827 cites W2963712766 @default.
- W4280492827 cites W2965722503 @default.
- W4280492827 cites W2994597996 @default.
- W4280492827 cites W3020870858 @default.
- W4280492827 cites W3022478400 @default.
- W4280492827 cites W3027304069 @default.
- W4280492827 cites W3034323190 @default.
- W4280492827 cites W3095123550 @default.
- W4280492827 cites W3106003309 @default.
- W4280492827 cites W3118781683 @default.
- W4280492827 cites W3120459079 @default.
- W4280492827 cites W3124334839 @default.
- W4280492827 cites W3166493954 @default.
- W4280492827 cites W3205377756 @default.
- W4280492827 cites W3209710747 @default.
- W4280492827 cites W3217511800 @default.
- W4280492827 cites W4206128901 @default.
- W4280492827 cites W4206365540 @default.
- W4280492827 cites W4206565514 @default.
- W4280492827 cites W4211237965 @default.
- W4280492827 doi "https://doi.org/10.1007/s10489-022-03567-4" @default.
- W4280492827 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35578619" @default.
- W4280492827 hasPublicationYear "2022" @default.
- W4280492827 type Work @default.
- W4280492827 citedByCount "1" @default.
- W4280492827 countsByYear W42804928272023 @default.
- W4280492827 crossrefType "journal-article" @default.
- W4280492827 hasAuthorship W4280492827A5016648929 @default.
- W4280492827 hasAuthorship W4280492827A5040265580 @default.
- W4280492827 hasAuthorship W4280492827A5044405835 @default.
- W4280492827 hasAuthorship W4280492827A5049137171 @default.
- W4280492827 hasAuthorship W4280492827A5067980523 @default.
- W4280492827 hasAuthorship W4280492827A5074344625 @default.
- W4280492827 hasBestOaLocation W42804928271 @default.
- W4280492827 hasConcept C119857082 @default.
- W4280492827 hasConcept C154945302 @default.
- W4280492827 hasConcept C169760540 @default.
- W4280492827 hasConcept C204321447 @default.
- W4280492827 hasConcept C26760741 @default.
- W4280492827 hasConcept C2776321320 @default.
- W4280492827 hasConcept C2777438025 @default.
- W4280492827 hasConcept C41008148 @default.
- W4280492827 hasConcept C49937458 @default.
- W4280492827 hasConcept C61224824 @default.
- W4280492827 hasConcept C86803240 @default.