Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280493037> ?p ?o ?g. }
- W4280493037 endingPage "105604" @default.
- W4280493037 startingPage "105604" @default.
- W4280493037 abstract "The traditional method of detecting COVID-19 disease mainly rely on the interpretation of computer tomography (CT) or X-ray images (X-ray) by doctors or professional researchers to identify whether it is COVID-19 disease, which is easy to cause identification mistakes. In this study, the technology of convolutional neural network is expected to be able to efficiently and accurately identify the COVID-19 disease. This study uses and fine-tunes seven convolutional neural networks including InceptionV3, ResNet50V2, Xception, DenseNet121, MobileNetV2, EfficientNet-B0, and EfficientNetV2 on COVID-19 detection. In addition, we proposes a lightweight convolutional neural network, LightEfficientNetV2, on small number of chest X-ray and CT images. Five-fold cross-validation was used to evaluate the performance of each model. To confirm the performance of the proposed model, LightEfficientNetV2 was carried out on three different datasets (NIH Chest X-rays, SARS-CoV-2 and COVID-CT). On chest X-ray image dataset, the highest accuracy 96.50% was from InceptionV3 before fine-tuning; and the highest accuracy 97.73% was from EfficientNetV2 after fine-tuning. The accuracy of the LightEfficientNetV2 model proposed in this study is 98.33% on chest X-ray image. On CT images, the best transfer learning model before fine-tuning is MobileNetV2, with an accuracy of 94.46%; the best transfer learning model after fine-tuning is Xception, with an accuracy of 96.78%. The accuracy of the LightEfficientNetV2 model proposed in this study is 97.48% on CT image. Compared with the SOTA, LightEfficientNetV2 proposed in this study demonstrates promising performance on chest X-ray images, CT images and three different datasets." @default.
- W4280493037 created "2022-05-22" @default.
- W4280493037 creator A5001312730 @default.
- W4280493037 creator A5031967712 @default.
- W4280493037 date "2022-07-01" @default.
- W4280493037 modified "2023-10-11" @default.
- W4280493037 title "A lightweight CNN-based network on COVID-19 detection using X-ray and CT images" @default.
- W4280493037 cites W2897806204 @default.
- W4280493037 cites W3013601031 @default.
- W4280493037 cites W3017644243 @default.
- W4280493037 cites W3019980738 @default.
- W4280493037 cites W3030621456 @default.
- W4280493037 cites W3039137888 @default.
- W4280493037 cites W3040660552 @default.
- W4280493037 cites W3040676006 @default.
- W4280493037 cites W3041133507 @default.
- W4280493037 cites W3046500052 @default.
- W4280493037 cites W3048123412 @default.
- W4280493037 cites W3048424015 @default.
- W4280493037 cites W3080406710 @default.
- W4280493037 cites W3095676075 @default.
- W4280493037 cites W3097211536 @default.
- W4280493037 cites W3099905444 @default.
- W4280493037 cites W3101606529 @default.
- W4280493037 cites W3103194435 @default.
- W4280493037 cites W3113444169 @default.
- W4280493037 cites W3122727436 @default.
- W4280493037 cites W3123778877 @default.
- W4280493037 cites W3124604242 @default.
- W4280493037 cites W3129350780 @default.
- W4280493037 cites W3136753563 @default.
- W4280493037 cites W3138985726 @default.
- W4280493037 cites W3159001838 @default.
- W4280493037 cites W3165071810 @default.
- W4280493037 cites W3168474540 @default.
- W4280493037 cites W3171963620 @default.
- W4280493037 cites W3173728300 @default.
- W4280493037 cites W3176429669 @default.
- W4280493037 cites W3178226228 @default.
- W4280493037 cites W3179490952 @default.
- W4280493037 cites W3183105248 @default.
- W4280493037 cites W3187766292 @default.
- W4280493037 cites W3187769826 @default.
- W4280493037 cites W3190790668 @default.
- W4280493037 cites W3191697561 @default.
- W4280493037 cites W3193130655 @default.
- W4280493037 cites W3194554921 @default.
- W4280493037 cites W3194778829 @default.
- W4280493037 cites W3199078399 @default.
- W4280493037 cites W3200268767 @default.
- W4280493037 cites W3202799525 @default.
- W4280493037 cites W3203547808 @default.
- W4280493037 cites W3205572382 @default.
- W4280493037 cites W3208888392 @default.
- W4280493037 cites W3211191383 @default.
- W4280493037 cites W3212912762 @default.
- W4280493037 cites W4200052220 @default.
- W4280493037 cites W4200226120 @default.
- W4280493037 cites W4206608885 @default.
- W4280493037 cites W4206930139 @default.
- W4280493037 cites W4210547843 @default.
- W4280493037 doi "https://doi.org/10.1016/j.compbiomed.2022.105604" @default.
- W4280493037 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35576824" @default.
- W4280493037 hasPublicationYear "2022" @default.
- W4280493037 type Work @default.
- W4280493037 citedByCount "33" @default.
- W4280493037 countsByYear W42804930372022 @default.
- W4280493037 countsByYear W42804930372023 @default.
- W4280493037 crossrefType "journal-article" @default.
- W4280493037 hasAuthorship W4280493037A5001312730 @default.
- W4280493037 hasAuthorship W4280493037A5031967712 @default.
- W4280493037 hasBestOaLocation W42804930372 @default.
- W4280493037 hasConcept C108583219 @default.
- W4280493037 hasConcept C115961682 @default.
- W4280493037 hasConcept C126838900 @default.
- W4280493037 hasConcept C142724271 @default.
- W4280493037 hasConcept C150899416 @default.
- W4280493037 hasConcept C153180895 @default.
- W4280493037 hasConcept C154945302 @default.
- W4280493037 hasConcept C2779134260 @default.
- W4280493037 hasConcept C3008058167 @default.
- W4280493037 hasConcept C3020132585 @default.
- W4280493037 hasConcept C31972630 @default.
- W4280493037 hasConcept C41008148 @default.
- W4280493037 hasConcept C50644808 @default.
- W4280493037 hasConcept C524204448 @default.
- W4280493037 hasConcept C71924100 @default.
- W4280493037 hasConcept C81363708 @default.
- W4280493037 hasConceptScore W4280493037C108583219 @default.
- W4280493037 hasConceptScore W4280493037C115961682 @default.
- W4280493037 hasConceptScore W4280493037C126838900 @default.
- W4280493037 hasConceptScore W4280493037C142724271 @default.
- W4280493037 hasConceptScore W4280493037C150899416 @default.
- W4280493037 hasConceptScore W4280493037C153180895 @default.
- W4280493037 hasConceptScore W4280493037C154945302 @default.
- W4280493037 hasConceptScore W4280493037C2779134260 @default.
- W4280493037 hasConceptScore W4280493037C3008058167 @default.
- W4280493037 hasConceptScore W4280493037C3020132585 @default.