Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280493039> ?p ?o ?g. }
- W4280493039 endingPage "A89" @default.
- W4280493039 startingPage "A89" @default.
- W4280493039 abstract "Component separation is the process with which emission sources in astrophysical maps are generally extracted by taking multi-frequency information into account. It is crucial to develop more reliable methods for component separation for future CMB experiments. We aim to develop a new method based on fully convolutional neural networks called the Cosmic microwave background Extraction Neural Network (CENN) in order to extract the CMB signal in total intensity. The frequencies used are the Planck channels 143, 217 and 353 GHz. We validate the network at all sky, and at three latitude intervals: lat1=0^{circ}<b<5^{circ}, lat2=5^{circ}<b<30^{circ} and lat3=30^{circ}<b<90^{circ}, without using any Galactic or point source masks. For training, we make realistic simulations in the form of patches of area 256 pixels, which contain the CMB, Dust, CIB and PS emissions, Sunyaev-Zel'dovich effect and the instrumental noise. After validate the network, we compare the power spectrum from input and output maps. We analyse the power spectrum from the residuals at each latitude interval and at all sky and we study the performance of our model dealing with high contamination at small scales. We obtain a power spectrum with an error of 13{pm}113 {mu}K^2 for multipoles up to above 4000. For residuals, we obtain 700{pm}60 {mu}K^2 for lat1, 80{pm}30 {mu}K^2 for lat2 and 30{pm}20 {mu}K^2 for lat3. For all sky, we obtain 20{pm}10 {mu}K^2. We validate the network in a patch with strong contamination at small scales, obtaining an error of 50{pm}120 {mu}K^2 and residuals of 40{pm}10 {mu}K^2. Therefore, fully convolutional neural networks are promising methods to perform component separation in future CMB experiments. Particularly, CENN is reliable against different levels of contamination from Galactic and point source foregrounds at both large and small scales." @default.
- W4280493039 created "2022-05-22" @default.
- W4280493039 creator A5006484385 @default.
- W4280493039 creator A5008169093 @default.
- W4280493039 creator A5010274077 @default.
- W4280493039 creator A5024932406 @default.
- W4280493039 creator A5028314546 @default.
- W4280493039 creator A5042132634 @default.
- W4280493039 creator A5046929851 @default.
- W4280493039 creator A5054666484 @default.
- W4280493039 creator A5055298938 @default.
- W4280493039 creator A5067929455 @default.
- W4280493039 date "2022-10-01" @default.
- W4280493039 modified "2023-10-01" @default.
- W4280493039 title "CENN: A fully convolutional neural network for CMB recovery in realistic microwave sky simulations" @default.
- W4280493039 cites W1498436455 @default.
- W4280493039 cites W1605315179 @default.
- W4280493039 cites W1970571200 @default.
- W4280493039 cites W1976579441 @default.
- W4280493039 cites W2000837459 @default.
- W4280493039 cites W2011301426 @default.
- W4280493039 cites W2037629290 @default.
- W4280493039 cites W2040127547 @default.
- W4280493039 cites W2043721767 @default.
- W4280493039 cites W2049184973 @default.
- W4280493039 cites W2064690675 @default.
- W4280493039 cites W2071232376 @default.
- W4280493039 cites W2084377030 @default.
- W4280493039 cites W2089290597 @default.
- W4280493039 cites W2096624375 @default.
- W4280493039 cites W2097140550 @default.
- W4280493039 cites W2112796928 @default.
- W4280493039 cites W2116440023 @default.
- W4280493039 cites W2118059901 @default.
- W4280493039 cites W2122083363 @default.
- W4280493039 cites W2130410830 @default.
- W4280493039 cites W2147328289 @default.
- W4280493039 cites W2147800946 @default.
- W4280493039 cites W2149476548 @default.
- W4280493039 cites W2888259247 @default.
- W4280493039 cites W2922580882 @default.
- W4280493039 cites W2950688433 @default.
- W4280493039 cites W2959953250 @default.
- W4280493039 cites W3017811505 @default.
- W4280493039 cites W3098003348 @default.
- W4280493039 cites W3098899650 @default.
- W4280493039 cites W3099082032 @default.
- W4280493039 cites W3099445393 @default.
- W4280493039 cites W3100546413 @default.
- W4280493039 cites W3100869288 @default.
- W4280493039 cites W3100926304 @default.
- W4280493039 cites W3102290135 @default.
- W4280493039 cites W3106186675 @default.
- W4280493039 cites W3124712485 @default.
- W4280493039 cites W3156531467 @default.
- W4280493039 cites W3173738540 @default.
- W4280493039 cites W3212173394 @default.
- W4280493039 cites W3216579506 @default.
- W4280493039 cites W4226249609 @default.
- W4280493039 cites W4288076070 @default.
- W4280493039 cites W4291186180 @default.
- W4280493039 cites W4292400014 @default.
- W4280493039 cites W4294401501 @default.
- W4280493039 cites W4294402007 @default.
- W4280493039 cites W4297439620 @default.
- W4280493039 doi "https://doi.org/10.1051/0004-6361/202243450" @default.
- W4280493039 hasPublicationYear "2022" @default.
- W4280493039 type Work @default.
- W4280493039 citedByCount "4" @default.
- W4280493039 countsByYear W42804930392023 @default.
- W4280493039 crossrefType "journal-article" @default.
- W4280493039 hasAuthorship W4280493039A5006484385 @default.
- W4280493039 hasAuthorship W4280493039A5008169093 @default.
- W4280493039 hasAuthorship W4280493039A5010274077 @default.
- W4280493039 hasAuthorship W4280493039A5024932406 @default.
- W4280493039 hasAuthorship W4280493039A5028314546 @default.
- W4280493039 hasAuthorship W4280493039A5042132634 @default.
- W4280493039 hasAuthorship W4280493039A5046929851 @default.
- W4280493039 hasAuthorship W4280493039A5054666484 @default.
- W4280493039 hasAuthorship W4280493039A5055298938 @default.
- W4280493039 hasAuthorship W4280493039A5067929455 @default.
- W4280493039 hasBestOaLocation W42804930391 @default.
- W4280493039 hasConcept C105795698 @default.
- W4280493039 hasConcept C115961682 @default.
- W4280493039 hasConcept C120665830 @default.
- W4280493039 hasConcept C121332964 @default.
- W4280493039 hasConcept C154945302 @default.
- W4280493039 hasConcept C166126730 @default.
- W4280493039 hasConcept C168110828 @default.
- W4280493039 hasConcept C207297109 @default.
- W4280493039 hasConcept C33923547 @default.
- W4280493039 hasConcept C41008148 @default.
- W4280493039 hasConcept C44838205 @default.
- W4280493039 hasConcept C44870925 @default.
- W4280493039 hasConcept C62520636 @default.
- W4280493039 hasConcept C73329638 @default.
- W4280493039 hasConcept C85725439 @default.
- W4280493039 hasConcept C99498987 @default.