Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280493549> ?p ?o ?g. }
- W4280493549 abstract "As one of the representative algorithms of deep learning, a convolutional neural network (CNN) with the advantage of local perception and parameter sharing has been rapidly developed. CNN-based detection technology has been widely used in computer vision, natural language processing, and other fields. Fresh fruit production is an important socioeconomic activity, where CNN-based deep learning detection technology has been successfully applied to its important links. To the best of our knowledge, this review is the first on the whole production process of fresh fruit. We first introduced the network architecture and implementation principle of CNN and described the training process of a CNN-based deep learning model in detail. A large number of articles were investigated, which have made breakthroughs in response to challenges using CNN-based deep learning detection technology in important links of fresh fruit production including fruit flower detection, fruit detection, fruit harvesting, and fruit grading. Object detection based on CNN deep learning was elaborated from data acquisition to model training, and different detection methods based on CNN deep learning were compared in each link of the fresh fruit production. The investigation results of this review show that improved CNN deep learning models can give full play to detection potential by combining with the characteristics of each link of fruit production. The investigation results also imply that CNN-based detection may penetrate the challenges created by environmental issues, new area exploration, and multiple task execution of fresh fruit production in the future." @default.
- W4280493549 created "2022-05-22" @default.
- W4280493549 creator A5014856271 @default.
- W4280493549 creator A5016709049 @default.
- W4280493549 creator A5031908321 @default.
- W4280493549 creator A5034022605 @default.
- W4280493549 creator A5060130626 @default.
- W4280493549 creator A5063288717 @default.
- W4280493549 creator A5064839560 @default.
- W4280493549 creator A5072379029 @default.
- W4280493549 creator A5084316329 @default.
- W4280493549 date "2022-05-16" @default.
- W4280493549 modified "2023-09-30" @default.
- W4280493549 title "Application of Convolutional Neural Network-Based Detection Methods in Fresh Fruit Production: A Comprehensive Review" @default.
- W4280493549 cites W1507506748 @default.
- W4280493549 cites W1677182931 @default.
- W4280493549 cites W1687702291 @default.
- W4280493549 cites W1901129140 @default.
- W4280493549 cites W1972544340 @default.
- W4280493549 cites W1989946714 @default.
- W4280493549 cites W2018563411 @default.
- W4280493549 cites W2022508996 @default.
- W4280493549 cites W2032395596 @default.
- W4280493549 cites W2038648750 @default.
- W4280493549 cites W2062599688 @default.
- W4280493549 cites W2087685837 @default.
- W4280493549 cites W2088049833 @default.
- W4280493549 cites W2097117768 @default.
- W4280493549 cites W2101926813 @default.
- W4280493549 cites W2102605133 @default.
- W4280493549 cites W2110764733 @default.
- W4280493549 cites W2119821739 @default.
- W4280493549 cites W2124313187 @default.
- W4280493549 cites W2131774270 @default.
- W4280493549 cites W2136922672 @default.
- W4280493549 cites W2147800946 @default.
- W4280493549 cites W2148143831 @default.
- W4280493549 cites W2155893237 @default.
- W4280493549 cites W2158698691 @default.
- W4280493549 cites W2161381512 @default.
- W4280493549 cites W2182749117 @default.
- W4280493549 cites W2183341477 @default.
- W4280493549 cites W2194775991 @default.
- W4280493549 cites W2257295833 @default.
- W4280493549 cites W2395611524 @default.
- W4280493549 cites W2412782625 @default.
- W4280493549 cites W2413122674 @default.
- W4280493549 cites W2473415337 @default.
- W4280493549 cites W2501369945 @default.
- W4280493549 cites W2502949459 @default.
- W4280493549 cites W2504108613 @default.
- W4280493549 cites W2543665758 @default.
- W4280493549 cites W2555576940 @default.
- W4280493549 cites W2565662353 @default.
- W4280493549 cites W2578363764 @default.
- W4280493549 cites W2585635281 @default.
- W4280493549 cites W2592618160 @default.
- W4280493549 cites W2609120775 @default.
- W4280493549 cites W2618530766 @default.
- W4280493549 cites W2777795072 @default.
- W4280493549 cites W2779039738 @default.
- W4280493549 cites W2790979755 @default.
- W4280493549 cites W2794915299 @default.
- W4280493549 cites W2806070179 @default.
- W4280493549 cites W2884367402 @default.
- W4280493549 cites W2884598383 @default.
- W4280493549 cites W2885453527 @default.
- W4280493549 cites W2885765965 @default.
- W4280493549 cites W2889912731 @default.
- W4280493549 cites W2894904576 @default.
- W4280493549 cites W2896736480 @default.
- W4280493549 cites W2898512534 @default.
- W4280493549 cites W2899287754 @default.
- W4280493549 cites W2899968057 @default.
- W4280493549 cites W2905502540 @default.
- W4280493549 cites W2906986610 @default.
- W4280493549 cites W2909494862 @default.
- W4280493549 cites W2914020374 @default.
- W4280493549 cites W2920326761 @default.
- W4280493549 cites W2920621226 @default.
- W4280493549 cites W2922623026 @default.
- W4280493549 cites W2936307272 @default.
- W4280493549 cites W2943955917 @default.
- W4280493549 cites W2948692490 @default.
- W4280493549 cites W2953151638 @default.
- W4280493549 cites W2953473428 @default.
- W4280493549 cites W2959026842 @default.
- W4280493549 cites W2960111557 @default.
- W4280493549 cites W2962793481 @default.
- W4280493549 cites W2962813473 @default.
- W4280493549 cites W2963446712 @default.
- W4280493549 cites W2963881378 @default.
- W4280493549 cites W2966593772 @default.
- W4280493549 cites W2969769846 @default.
- W4280493549 cites W2971290821 @default.
- W4280493549 cites W2973497687 @default.
- W4280493549 cites W2974511126 @default.
- W4280493549 cites W2979404229 @default.
- W4280493549 cites W2984249216 @default.
- W4280493549 cites W2985835333 @default.