Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280493558> ?p ?o ?g. }
- W4280493558 endingPage "109032" @default.
- W4280493558 startingPage "109032" @default.
- W4280493558 abstract "As the number of Internet-connected systems rises, cyber analysts find it increasingly difficult to effectively monitor the produced volume of data, its velocity and diversity. Signature-based cybersecurity strategies are unlikely to achieve the required performance for detecting new attack vectors. Moreover, technological advances enable attackers to develop sophisticated attack strategies that can avoid detection by current security systems. As the cyber-threat landscape worsens, we need advanced tools and technologies to detect, investigate, and make quick decisions regarding emerging attacks and threats. Applications of artificial intelligence (AI) have the potential to analyze and automatically classify vast amounts of Internet traffic. AI-based solutions that automate the detection of attacks and tackle complex cybersecurity problems are gaining increasing attention. This paper comprehensively presents the promising applications of deep learning, a subfield of AI based on multiple layers of artificial neural networks, in a wide variety of security tasks. Before critically and comparatively surveying state-of-the-art solutions from the literature, we discuss the key characteristics of representative deep learning architectures employed in cybersecurity applications, we introduce the emerging trends in deep learning, and we provide an overview of necessary resources like a generic framework and suitable datasets. We identify the limitations of the reviewed works, and we bring forth a vision of the current challenges of the area, providing valuable insights and good practices for researchers and developers working on related problems. Finally, we uncover current pain points and outline directions for future research to address them." @default.
- W4280493558 created "2022-05-22" @default.
- W4280493558 creator A5013518014 @default.
- W4280493558 creator A5016435353 @default.
- W4280493558 creator A5054930399 @default.
- W4280493558 date "2022-07-01" @default.
- W4280493558 modified "2023-10-17" @default.
- W4280493558 title "A survey on deep learning for cybersecurity: Progress, challenges, and opportunities" @default.
- W4280493558 cites W1498436455 @default.
- W4280493558 cites W1502800186 @default.
- W4280493558 cites W1543614656 @default.
- W4280493558 cites W1682403713 @default.
- W4280493558 cites W176212337 @default.
- W4280493558 cites W1955857676 @default.
- W4280493558 cites W1976955200 @default.
- W4280493558 cites W1998871422 @default.
- W4280493558 cites W2021372153 @default.
- W4280493558 cites W2028070713 @default.
- W4280493558 cites W2029591949 @default.
- W4280493558 cites W2031163547 @default.
- W4280493558 cites W2036166268 @default.
- W4280493558 cites W2039858940 @default.
- W4280493558 cites W2046376809 @default.
- W4280493558 cites W2060537671 @default.
- W4280493558 cites W2077488147 @default.
- W4280493558 cites W2104692292 @default.
- W4280493558 cites W2111571136 @default.
- W4280493558 cites W2124537004 @default.
- W4280493558 cites W2136922672 @default.
- W4280493558 cites W2139669429 @default.
- W4280493558 cites W2145339207 @default.
- W4280493558 cites W2150355110 @default.
- W4280493558 cites W2170123469 @default.
- W4280493558 cites W2171590421 @default.
- W4280493558 cites W2190432600 @default.
- W4280493558 cites W2342408547 @default.
- W4280493558 cites W2343828539 @default.
- W4280493558 cites W2360903897 @default.
- W4280493558 cites W2417906089 @default.
- W4280493558 cites W2524919294 @default.
- W4280493558 cites W2560647685 @default.
- W4280493558 cites W2595933558 @default.
- W4280493558 cites W2615509641 @default.
- W4280493558 cites W2743151379 @default.
- W4280493558 cites W2745867557 @default.
- W4280493558 cites W2762654164 @default.
- W4280493558 cites W2766447205 @default.
- W4280493558 cites W2768793959 @default.
- W4280493558 cites W2781091734 @default.
- W4280493558 cites W2783538964 @default.
- W4280493558 cites W2786075294 @default.
- W4280493558 cites W2789377834 @default.
- W4280493558 cites W2789983203 @default.
- W4280493558 cites W2792450155 @default.
- W4280493558 cites W2797558164 @default.
- W4280493558 cites W2803380720 @default.
- W4280493558 cites W2803414046 @default.
- W4280493558 cites W2803881474 @default.
- W4280493558 cites W2807786182 @default.
- W4280493558 cites W2810443361 @default.
- W4280493558 cites W2875475762 @default.
- W4280493558 cites W2883055448 @default.
- W4280493558 cites W2885039321 @default.
- W4280493558 cites W2897202622 @default.
- W4280493558 cites W2900547346 @default.
- W4280493558 cites W2901280956 @default.
- W4280493558 cites W2905097561 @default.
- W4280493558 cites W2915969651 @default.
- W4280493558 cites W2919115771 @default.
- W4280493558 cites W2921573932 @default.
- W4280493558 cites W2929617614 @default.
- W4280493558 cites W2929803724 @default.
- W4280493558 cites W2940934424 @default.
- W4280493558 cites W2942091739 @default.
- W4280493558 cites W2944360588 @default.
- W4280493558 cites W2945434604 @default.
- W4280493558 cites W2946092763 @default.
- W4280493558 cites W2948384692 @default.
- W4280493558 cites W2950865323 @default.
- W4280493558 cites W2951187092 @default.
- W4280493558 cites W2960833983 @default.
- W4280493558 cites W2962814013 @default.
- W4280493558 cites W2962984188 @default.
- W4280493558 cites W2963351448 @default.
- W4280493558 cites W2963704216 @default.
- W4280493558 cites W2964248614 @default.
- W4280493558 cites W2966158178 @default.
- W4280493558 cites W2966284335 @default.
- W4280493558 cites W2971058209 @default.
- W4280493558 cites W2971852873 @default.
- W4280493558 cites W2977601947 @default.
- W4280493558 cites W2980185226 @default.
- W4280493558 cites W2980821238 @default.
- W4280493558 cites W2990995058 @default.
- W4280493558 cites W2991327923 @default.
- W4280493558 cites W2999697944 @default.
- W4280493558 cites W3001275383 @default.
- W4280493558 cites W3005260862 @default.