Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280493642> ?p ?o ?g. }
- W4280493642 endingPage "3662" @default.
- W4280493642 startingPage "3662" @default.
- W4280493642 abstract "Deep learning-based methods, especially convolutional neural networks, have been developed to automatically process the images of concrete surfaces for crack identification tasks. Although deep learning-based methods claim very high accuracy, they often ignore the complexity of the image collection process. Real-world images are often impacted by complex illumination conditions, shadows, the randomness of crack shapes and sizes, blemishes, and concrete spall. Published literature and available shadow databases are oriented towards images taken in laboratory conditions. In this paper, we explore the complexity of image classification for concrete crack detection in the presence of demanding illumination conditions. Challenges associated with the application of deep learning-based methods for detecting concrete cracks in the presence of shadows are elaborated on in this paper. Novel shadow augmentation techniques are developed to increase the accuracy of automatic detection of concrete cracks." @default.
- W4280493642 created "2022-05-22" @default.
- W4280493642 creator A5000904512 @default.
- W4280493642 creator A5003224781 @default.
- W4280493642 creator A5014251095 @default.
- W4280493642 creator A5014828096 @default.
- W4280493642 creator A5040829874 @default.
- W4280493642 creator A5078867126 @default.
- W4280493642 date "2022-05-11" @default.
- W4280493642 modified "2023-10-14" @default.
- W4280493642 title "Automatic Detection of Cracks on Concrete Surfaces in the Presence of Shadows" @default.
- W4280493642 cites W130013534 @default.
- W4280493642 cites W2024839283 @default.
- W4280493642 cites W2066511025 @default.
- W4280493642 cites W2066886026 @default.
- W4280493642 cites W2166502676 @default.
- W4280493642 cites W2252574053 @default.
- W4280493642 cites W2588612844 @default.
- W4280493642 cites W2598457882 @default.
- W4280493642 cites W2793748480 @default.
- W4280493642 cites W2896613037 @default.
- W4280493642 cites W2910362756 @default.
- W4280493642 cites W2921353216 @default.
- W4280493642 cites W2948461581 @default.
- W4280493642 cites W2980410784 @default.
- W4280493642 cites W2998997213 @default.
- W4280493642 cites W3035881285 @default.
- W4280493642 cites W3101272581 @default.
- W4280493642 cites W3123663133 @default.
- W4280493642 cites W3134503721 @default.
- W4280493642 cites W3139096236 @default.
- W4280493642 cites W3197712350 @default.
- W4280493642 cites W3215467915 @default.
- W4280493642 doi "https://doi.org/10.3390/s22103662" @default.
- W4280493642 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35632070" @default.
- W4280493642 hasPublicationYear "2022" @default.
- W4280493642 type Work @default.
- W4280493642 citedByCount "11" @default.
- W4280493642 countsByYear W42804936422022 @default.
- W4280493642 countsByYear W42804936422023 @default.
- W4280493642 crossrefType "journal-article" @default.
- W4280493642 hasAuthorship W4280493642A5000904512 @default.
- W4280493642 hasAuthorship W4280493642A5003224781 @default.
- W4280493642 hasAuthorship W4280493642A5014251095 @default.
- W4280493642 hasAuthorship W4280493642A5014828096 @default.
- W4280493642 hasAuthorship W4280493642A5040829874 @default.
- W4280493642 hasAuthorship W4280493642A5078867126 @default.
- W4280493642 hasBestOaLocation W42804936421 @default.
- W4280493642 hasConcept C105795698 @default.
- W4280493642 hasConcept C108583219 @default.
- W4280493642 hasConcept C111919701 @default.
- W4280493642 hasConcept C115961682 @default.
- W4280493642 hasConcept C116834253 @default.
- W4280493642 hasConcept C117797892 @default.
- W4280493642 hasConcept C125112378 @default.
- W4280493642 hasConcept C127413603 @default.
- W4280493642 hasConcept C154945302 @default.
- W4280493642 hasConcept C15744967 @default.
- W4280493642 hasConcept C31972630 @default.
- W4280493642 hasConcept C33923547 @default.
- W4280493642 hasConcept C41008148 @default.
- W4280493642 hasConcept C542102704 @default.
- W4280493642 hasConcept C59822182 @default.
- W4280493642 hasConcept C64355373 @default.
- W4280493642 hasConcept C66938386 @default.
- W4280493642 hasConcept C81363708 @default.
- W4280493642 hasConcept C86803240 @default.
- W4280493642 hasConcept C98045186 @default.
- W4280493642 hasConceptScore W4280493642C105795698 @default.
- W4280493642 hasConceptScore W4280493642C108583219 @default.
- W4280493642 hasConceptScore W4280493642C111919701 @default.
- W4280493642 hasConceptScore W4280493642C115961682 @default.
- W4280493642 hasConceptScore W4280493642C116834253 @default.
- W4280493642 hasConceptScore W4280493642C117797892 @default.
- W4280493642 hasConceptScore W4280493642C125112378 @default.
- W4280493642 hasConceptScore W4280493642C127413603 @default.
- W4280493642 hasConceptScore W4280493642C154945302 @default.
- W4280493642 hasConceptScore W4280493642C15744967 @default.
- W4280493642 hasConceptScore W4280493642C31972630 @default.
- W4280493642 hasConceptScore W4280493642C33923547 @default.
- W4280493642 hasConceptScore W4280493642C41008148 @default.
- W4280493642 hasConceptScore W4280493642C542102704 @default.
- W4280493642 hasConceptScore W4280493642C59822182 @default.
- W4280493642 hasConceptScore W4280493642C64355373 @default.
- W4280493642 hasConceptScore W4280493642C66938386 @default.
- W4280493642 hasConceptScore W4280493642C81363708 @default.
- W4280493642 hasConceptScore W4280493642C86803240 @default.
- W4280493642 hasConceptScore W4280493642C98045186 @default.
- W4280493642 hasFunder F4320329465 @default.
- W4280493642 hasIssue "10" @default.
- W4280493642 hasLocation W42804936421 @default.
- W4280493642 hasLocation W42804936422 @default.
- W4280493642 hasLocation W42804936423 @default.
- W4280493642 hasOpenAccess W4280493642 @default.
- W4280493642 hasPrimaryLocation W42804936421 @default.
- W4280493642 hasRelatedWork W2317337758 @default.
- W4280493642 hasRelatedWork W2731899572 @default.
- W4280493642 hasRelatedWork W2999805992 @default.