Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280493931> ?p ?o ?g. }
- W4280493931 abstract "We demonstrate a virtual pretreatment patient-specific QA (PSQA) procedure that is capable of quantifying dosimetric effect on patient anatomy for both intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). A machine learning prediction model was developed to use linear accelerator parameters derived from the DICOM-RT plan to predict delivery discrepancies at treatment delivery (defined as the difference between trajectory log file and DICOM-RT) and was coupled with an independent Monte Carlo dose calculation algorithm for dosimetric analysis. Machine learning models for IMRT and VMAT were trained and validated using 120 IMRT and 206 VMAT fields of prior patients, with 80% assigned for iterative training and testing, and 20% for post-training validation. Various prediction models were trained and validated, with the final models selected for clinical implementation being a boosted tree and bagged tree for IMRT and VMAT, respectively. After validation, these models were then applied clinically to predict the machine parameters at treatment delivery for 7 IMRT plans from various sites (61 fields) and 10 VMAT multi-target intracranial radiosurgery plans (35 arcs) and compared to the dosimetric effect calculated directly from trajectory log files. Dose indices tracked for targets and organs at risk included dose received by 99%, 95%, and 1% of the volume, mean dose, percent of volume receiving 25%–100% of the prescription dose. The average coefficient of determination (r2) when comparing intra-field predicted and actual delivery error was 0.987 ± 0.012 for IMRT and 0.895 ± 0.095 for VMAT, whereas r2 when comparing inter-field predicted versus actual delivery error was 0.982 for IMRT and 0.989 for VMAT. Regarding dosimetric analysis, r2 when comparing predicted versus actual dosimetric changes for all dose indices was 0.966 for IMRT and 0.907 for VMAT. Prediction models can be used to anticipate the dosimetric effect calculated from trajectory files and have potential as a “delivery-free” pretreatment analysis to enhance PSQA." @default.
- W4280493931 created "2022-05-22" @default.
- W4280493931 creator A5023474185 @default.
- W4280493931 creator A5026742106 @default.
- W4280493931 creator A5028635531 @default.
- W4280493931 creator A5062660395 @default.
- W4280493931 creator A5079311965 @default.
- W4280493931 date "2022-05-15" @default.
- W4280493931 modified "2023-10-01" @default.
- W4280493931 title "Virtual patient‐specific QA with DVH‐based metrics" @default.
- W4280493931 cites W1564093136 @default.
- W4280493931 cites W1968671127 @default.
- W4280493931 cites W1975091303 @default.
- W4280493931 cites W1978237301 @default.
- W4280493931 cites W1978430361 @default.
- W4280493931 cites W1985095880 @default.
- W4280493931 cites W1991102697 @default.
- W4280493931 cites W2011040384 @default.
- W4280493931 cites W2013608895 @default.
- W4280493931 cites W2050139244 @default.
- W4280493931 cites W2050311003 @default.
- W4280493931 cites W2058650280 @default.
- W4280493931 cites W2066276266 @default.
- W4280493931 cites W2116644965 @default.
- W4280493931 cites W2129768450 @default.
- W4280493931 cites W2163399589 @default.
- W4280493931 cites W2246298096 @default.
- W4280493931 cites W2295556464 @default.
- W4280493931 cites W2405910507 @default.
- W4280493931 cites W2472443435 @default.
- W4280493931 cites W2518371836 @default.
- W4280493931 cites W2568526291 @default.
- W4280493931 cites W2580230770 @default.
- W4280493931 cites W2748063510 @default.
- W4280493931 cites W2749375587 @default.
- W4280493931 cites W2774635450 @default.
- W4280493931 cites W2791042095 @default.
- W4280493931 cites W2794962342 @default.
- W4280493931 cites W2808660009 @default.
- W4280493931 cites W2897765200 @default.
- W4280493931 cites W2902307718 @default.
- W4280493931 cites W2929904232 @default.
- W4280493931 cites W2947741901 @default.
- W4280493931 cites W2949077056 @default.
- W4280493931 cites W2964998168 @default.
- W4280493931 cites W2966460997 @default.
- W4280493931 cites W2995922582 @default.
- W4280493931 cites W2999010647 @default.
- W4280493931 cites W2999967864 @default.
- W4280493931 cites W3101241141 @default.
- W4280493931 cites W3112220449 @default.
- W4280493931 cites W3113158721 @default.
- W4280493931 cites W3151428855 @default.
- W4280493931 cites W3174118862 @default.
- W4280493931 cites W4241005218 @default.
- W4280493931 cites W4280493931 @default.
- W4280493931 cites W4297957988 @default.
- W4280493931 doi "https://doi.org/10.1002/acm2.13639" @default.
- W4280493931 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35570395" @default.
- W4280493931 hasPublicationYear "2022" @default.
- W4280493931 type Work @default.
- W4280493931 citedByCount "6" @default.
- W4280493931 countsByYear W42804939312022 @default.
- W4280493931 countsByYear W42804939312023 @default.
- W4280493931 crossrefType "journal-article" @default.
- W4280493931 hasAuthorship W4280493931A5023474185 @default.
- W4280493931 hasAuthorship W4280493931A5026742106 @default.
- W4280493931 hasAuthorship W4280493931A5028635531 @default.
- W4280493931 hasAuthorship W4280493931A5062660395 @default.
- W4280493931 hasAuthorship W4280493931A5079311965 @default.
- W4280493931 hasBestOaLocation W42804939312 @default.
- W4280493931 hasConcept C120665830 @default.
- W4280493931 hasConcept C121332964 @default.
- W4280493931 hasConcept C126838900 @default.
- W4280493931 hasConcept C154945302 @default.
- W4280493931 hasConcept C168834538 @default.
- W4280493931 hasConcept C180048950 @default.
- W4280493931 hasConcept C19527891 @default.
- W4280493931 hasConcept C2780271382 @default.
- W4280493931 hasConcept C2780387249 @default.
- W4280493931 hasConcept C2989005 @default.
- W4280493931 hasConcept C41008148 @default.
- W4280493931 hasConcept C509974204 @default.
- W4280493931 hasConcept C71924100 @default.
- W4280493931 hasConcept C77331912 @default.
- W4280493931 hasConceptScore W4280493931C120665830 @default.
- W4280493931 hasConceptScore W4280493931C121332964 @default.
- W4280493931 hasConceptScore W4280493931C126838900 @default.
- W4280493931 hasConceptScore W4280493931C154945302 @default.
- W4280493931 hasConceptScore W4280493931C168834538 @default.
- W4280493931 hasConceptScore W4280493931C180048950 @default.
- W4280493931 hasConceptScore W4280493931C19527891 @default.
- W4280493931 hasConceptScore W4280493931C2780271382 @default.
- W4280493931 hasConceptScore W4280493931C2780387249 @default.
- W4280493931 hasConceptScore W4280493931C2989005 @default.
- W4280493931 hasConceptScore W4280493931C41008148 @default.
- W4280493931 hasConceptScore W4280493931C509974204 @default.
- W4280493931 hasConceptScore W4280493931C71924100 @default.
- W4280493931 hasConceptScore W4280493931C77331912 @default.
- W4280493931 hasIssue "11" @default.