Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280494023> ?p ?o ?g. }
- W4280494023 abstract "Abstract Optimal transport (OT) methods seek a transformation map (or plan) between two probability measures, such that the transformation has the minimum transportation cost. Such a minimum transport cost, with a certain power transform, is called the Wasserstein distance. Recently, OT methods have drawn great attention in statistics, machine learning, and computer science, especially in deep generative neural networks. Despite its broad applications, the estimation of high‐dimensional Wasserstein distances is a well‐known challenging problem owing to the curse‐of‐dimensionality. There are some cutting‐edge projection‐based techniques that tackle high‐dimensional OT problems. Three major approaches of such techniques are introduced, respectively, the slicing approach, the iterative projection approach, and the projection robust OT approach. Open challenges are discussed at the end of the review. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Dimension Reduction Statistical Learning and Exploratory Methods of the Data Sciences > Manifold Learning" @default.
- W4280494023 created "2022-05-22" @default.
- W4280494023 creator A5007798612 @default.
- W4280494023 creator A5032090776 @default.
- W4280494023 creator A5068158931 @default.
- W4280494023 creator A5087341257 @default.
- W4280494023 date "2022-05-13" @default.
- W4280494023 modified "2023-10-15" @default.
- W4280494023 title "Projection‐based techniques for high‐dimensional optimal transport problems" @default.
- W4280494023 cites W1035080392 @default.
- W4280494023 cites W1594039573 @default.
- W4280494023 cites W1639961155 @default.
- W4280494023 cites W1978501336 @default.
- W4280494023 cites W2006957355 @default.
- W4280494023 cites W2009462809 @default.
- W4280494023 cites W2019106840 @default.
- W4280494023 cites W2037468546 @default.
- W4280494023 cites W2082612735 @default.
- W4280494023 cites W2086014844 @default.
- W4280494023 cites W2091886411 @default.
- W4280494023 cites W2132883347 @default.
- W4280494023 cites W2139297600 @default.
- W4280494023 cites W2141015396 @default.
- W4280494023 cites W2144405862 @default.
- W4280494023 cites W2162375667 @default.
- W4280494023 cites W2163490846 @default.
- W4280494023 cites W2168020168 @default.
- W4280494023 cites W2204774351 @default.
- W4280494023 cites W2474265885 @default.
- W4280494023 cites W2509351257 @default.
- W4280494023 cites W2626618681 @default.
- W4280494023 cites W2795320988 @default.
- W4280494023 cites W2798836194 @default.
- W4280494023 cites W2806625173 @default.
- W4280494023 cites W2807841289 @default.
- W4280494023 cites W2911279170 @default.
- W4280494023 cites W2943355826 @default.
- W4280494023 cites W2945214828 @default.
- W4280494023 cites W2962688977 @default.
- W4280494023 cites W2962877661 @default.
- W4280494023 cites W2963134136 @default.
- W4280494023 cites W2963181447 @default.
- W4280494023 cites W2963398989 @default.
- W4280494023 cites W2963563295 @default.
- W4280494023 cites W2963609603 @default.
- W4280494023 cites W2963614278 @default.
- W4280494023 cites W2963875852 @default.
- W4280494023 cites W2964015493 @default.
- W4280494023 cites W2973214398 @default.
- W4280494023 cites W2979557588 @default.
- W4280494023 cites W2995870102 @default.
- W4280494023 cites W2996858319 @default.
- W4280494023 cites W3022172246 @default.
- W4280494023 cites W3033420020 @default.
- W4280494023 cites W3037382667 @default.
- W4280494023 cites W3041047530 @default.
- W4280494023 cites W3047682456 @default.
- W4280494023 cites W3096328422 @default.
- W4280494023 cites W3098869601 @default.
- W4280494023 cites W3099470970 @default.
- W4280494023 cites W3102246635 @default.
- W4280494023 cites W3112717819 @default.
- W4280494023 cites W3119992044 @default.
- W4280494023 cites W3124479915 @default.
- W4280494023 cites W3140884725 @default.
- W4280494023 cites W3175077502 @default.
- W4280494023 cites W3176131793 @default.
- W4280494023 cites W3190217499 @default.
- W4280494023 cites W3214583003 @default.
- W4280494023 cites W4206471589 @default.
- W4280494023 cites W4225982766 @default.
- W4280494023 cites W4230676649 @default.
- W4280494023 cites W4238957295 @default.
- W4280494023 cites W4241005218 @default.
- W4280494023 cites W648263199 @default.
- W4280494023 doi "https://doi.org/10.1002/wics.1587" @default.
- W4280494023 hasPublicationYear "2022" @default.
- W4280494023 type Work @default.
- W4280494023 citedByCount "1" @default.
- W4280494023 countsByYear W42804940232022 @default.
- W4280494023 crossrefType "journal-article" @default.
- W4280494023 hasAuthorship W4280494023A5007798612 @default.
- W4280494023 hasAuthorship W4280494023A5032090776 @default.
- W4280494023 hasAuthorship W4280494023A5068158931 @default.
- W4280494023 hasAuthorship W4280494023A5087341257 @default.
- W4280494023 hasBestOaLocation W42804940231 @default.
- W4280494023 hasConcept C104317684 @default.
- W4280494023 hasConcept C111030470 @default.
- W4280494023 hasConcept C11413529 @default.
- W4280494023 hasConcept C119857082 @default.
- W4280494023 hasConcept C120894424 @default.
- W4280494023 hasConcept C124101348 @default.
- W4280494023 hasConcept C126255220 @default.
- W4280494023 hasConcept C154945302 @default.
- W4280494023 hasConcept C162307627 @default.
- W4280494023 hasConcept C185592680 @default.
- W4280494023 hasConcept C202444582 @default.
- W4280494023 hasConcept C204241405 @default.
- W4280494023 hasConcept C33676613 @default.
- W4280494023 hasConcept C33923547 @default.