Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280494063> ?p ?o ?g. }
- W4280494063 endingPage "109025" @default.
- W4280494063 startingPage "109025" @default.
- W4280494063 abstract "The theory of fuzzy rough sets is an effective soft computing paradigm for dealing with vague, uncertain, or imprecise data. However, most existing fuzzy rough sets-based methods may suffer from robustness since all samples are considered equally and also these methods are designed to cater for supervised or unsupervised learning. In this paper, we propose a weighted fuzzy rough sets-based multi-view tri-training model for partially labeled data. Specifically, considering the negative effect of noise, we first use a technique of data editing to filter potentially possible noises, and then a gradient descent algorithm is employed to optimize the weight of each sample with the objective of maximizing high-order weighted fuzzy dependency, based on which a robust weighted fuzzy rough set model is developed for labeled data. Moreover, we introduce the robust weighted fuzzy rough sets into tri-training and propose multi-view-based robust tri-training for partially labeled data by exploring data representations in the original view, the transformed view of principal component analysis, and the granular view after discretization. Extensive experiments conducted on UCI benchmark and medical diagnosis data sets show that the proposed model achieves favorable results in both supervised and semi-supervised scenarios." @default.
- W4280494063 created "2022-05-22" @default.
- W4280494063 creator A5008355957 @default.
- W4280494063 creator A5032191677 @default.
- W4280494063 creator A5059348369 @default.
- W4280494063 date "2022-07-01" @default.
- W4280494063 modified "2023-10-01" @default.
- W4280494063 title "Weighted fuzzy rough sets-based tri-training and its application to medical diagnosis" @default.
- W4280494063 cites W1600321904 @default.
- W4280494063 cites W1969463949 @default.
- W4280494063 cites W1976034104 @default.
- W4280494063 cites W1988907639 @default.
- W4280494063 cites W2002680690 @default.
- W4280494063 cites W2021680742 @default.
- W4280494063 cites W2025172647 @default.
- W4280494063 cites W2027654459 @default.
- W4280494063 cites W2036135215 @default.
- W4280494063 cites W2037603696 @default.
- W4280494063 cites W2043105151 @default.
- W4280494063 cites W2054644753 @default.
- W4280494063 cites W2076837108 @default.
- W4280494063 cites W2096393821 @default.
- W4280494063 cites W2097923398 @default.
- W4280494063 cites W2098933520 @default.
- W4280494063 cites W2111011053 @default.
- W4280494063 cites W2125644499 @default.
- W4280494063 cites W2133556223 @default.
- W4280494063 cites W2143451122 @default.
- W4280494063 cites W2154887800 @default.
- W4280494063 cites W2167460663 @default.
- W4280494063 cites W2169323880 @default.
- W4280494063 cites W2318901577 @default.
- W4280494063 cites W2350506101 @default.
- W4280494063 cites W2563233531 @default.
- W4280494063 cites W2766239046 @default.
- W4280494063 cites W2773841211 @default.
- W4280494063 cites W2796330245 @default.
- W4280494063 cites W2798681837 @default.
- W4280494063 cites W2801786879 @default.
- W4280494063 cites W2804031762 @default.
- W4280494063 cites W2899570649 @default.
- W4280494063 cites W2924544469 @default.
- W4280494063 cites W2934195809 @default.
- W4280494063 cites W2946254831 @default.
- W4280494063 cites W2984353870 @default.
- W4280494063 cites W3008335143 @default.
- W4280494063 cites W3019040795 @default.
- W4280494063 cites W3020067472 @default.
- W4280494063 cites W3020361001 @default.
- W4280494063 cites W3082803151 @default.
- W4280494063 cites W3086403350 @default.
- W4280494063 cites W3109271319 @default.
- W4280494063 cites W3144658597 @default.
- W4280494063 cites W3179013313 @default.
- W4280494063 cites W3190314579 @default.
- W4280494063 cites W3195152596 @default.
- W4280494063 cites W3195285466 @default.
- W4280494063 cites W3214620214 @default.
- W4280494063 cites W4255833381 @default.
- W4280494063 cites W636917482 @default.
- W4280494063 doi "https://doi.org/10.1016/j.asoc.2022.109025" @default.
- W4280494063 hasPublicationYear "2022" @default.
- W4280494063 type Work @default.
- W4280494063 citedByCount "5" @default.
- W4280494063 countsByYear W42804940632023 @default.
- W4280494063 crossrefType "journal-article" @default.
- W4280494063 hasAuthorship W4280494063A5008355957 @default.
- W4280494063 hasAuthorship W4280494063A5032191677 @default.
- W4280494063 hasAuthorship W4280494063A5059348369 @default.
- W4280494063 hasConcept C104317684 @default.
- W4280494063 hasConcept C111012933 @default.
- W4280494063 hasConcept C119857082 @default.
- W4280494063 hasConcept C124101348 @default.
- W4280494063 hasConcept C134306372 @default.
- W4280494063 hasConcept C153180895 @default.
- W4280494063 hasConcept C154945302 @default.
- W4280494063 hasConcept C185592680 @default.
- W4280494063 hasConcept C33923547 @default.
- W4280494063 hasConcept C41008148 @default.
- W4280494063 hasConcept C42011625 @default.
- W4280494063 hasConcept C55493867 @default.
- W4280494063 hasConcept C58166 @default.
- W4280494063 hasConcept C63479239 @default.
- W4280494063 hasConcept C73000952 @default.
- W4280494063 hasConceptScore W4280494063C104317684 @default.
- W4280494063 hasConceptScore W4280494063C111012933 @default.
- W4280494063 hasConceptScore W4280494063C119857082 @default.
- W4280494063 hasConceptScore W4280494063C124101348 @default.
- W4280494063 hasConceptScore W4280494063C134306372 @default.
- W4280494063 hasConceptScore W4280494063C153180895 @default.
- W4280494063 hasConceptScore W4280494063C154945302 @default.
- W4280494063 hasConceptScore W4280494063C185592680 @default.
- W4280494063 hasConceptScore W4280494063C33923547 @default.
- W4280494063 hasConceptScore W4280494063C41008148 @default.
- W4280494063 hasConceptScore W4280494063C42011625 @default.
- W4280494063 hasConceptScore W4280494063C55493867 @default.
- W4280494063 hasConceptScore W4280494063C58166 @default.
- W4280494063 hasConceptScore W4280494063C63479239 @default.