Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280494432> ?p ?o ?g. }
- W4280494432 abstract "Abstract Detection, diagnosis, and treatment of ophthalmic diseases depend on extraction of information (features and/or their dimensions) from the images. Deep learning (DL) model are crucial for the automation of it. Here, we report on the development of a lightweight DL model, which can precisely segment/detect the required features automatically. The model utilizes dimensionality reduction of image to extract important features, and channel contraction to allow only the required high-level features necessary for reconstruction of segmented feature image. Performance of present model in detection of glaucoma from optical coherence tomography angiography (OCTA) images of retina is high (area under the receiver-operator characteristic curve AUC ~ 0.81). Bland–Altman analysis gave exceptionally low bias (~ 0.00185), and high Pearson’s correlation coefficient ( p = 0.9969) between the parameters determined from manual and DL based segmentation. On the same dataset, bias is an order of magnitude higher (~ 0.0694, p = 0.8534) for commercial software. Present model is 10 times lighter than Unet (popular for biomedical image segmentation) and have a better segmentation accuracy and model training reproducibility (based on the analysis of 3670 OCTA images). High dice similarity coefficient (D) for variety of ophthalmic images suggested it’s wider scope in precise segmentation of images even from other fields. Our concept of channel narrowing is not only important for the segmentation problems, but it can also reduce number of parameters significantly in object classification models. Enhanced disease diagnostic accuracy can be achieved for the resource limited devices (such as mobile phone, Nvidia’s Jetson, Raspberry pi) used in self-monitoring, and tele-screening (memory size of trained model ~ 35 MB)." @default.
- W4280494432 created "2022-05-22" @default.
- W4280494432 creator A5009259465 @default.
- W4280494432 creator A5013152556 @default.
- W4280494432 creator A5019808235 @default.
- W4280494432 creator A5022621431 @default.
- W4280494432 creator A5028806927 @default.
- W4280494432 creator A5052266166 @default.
- W4280494432 creator A5076393081 @default.
- W4280494432 creator A5087278931 @default.
- W4280494432 date "2022-05-20" @default.
- W4280494432 modified "2023-10-16" @default.
- W4280494432 title "A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images" @default.
- W4280494432 cites W1901129140 @default.
- W4280494432 cites W1977349774 @default.
- W4280494432 cites W1991934654 @default.
- W4280494432 cites W1997847907 @default.
- W4280494432 cites W2042497109 @default.
- W4280494432 cites W2092300159 @default.
- W4280494432 cites W2115628058 @default.
- W4280494432 cites W2150769593 @default.
- W4280494432 cites W2159759971 @default.
- W4280494432 cites W2168112110 @default.
- W4280494432 cites W2320230300 @default.
- W4280494432 cites W2327793514 @default.
- W4280494432 cites W2332527782 @default.
- W4280494432 cites W2491508181 @default.
- W4280494432 cites W2504150216 @default.
- W4280494432 cites W2505641043 @default.
- W4280494432 cites W2604622558 @default.
- W4280494432 cites W2608854843 @default.
- W4280494432 cites W2740052380 @default.
- W4280494432 cites W2741520251 @default.
- W4280494432 cites W2771407298 @default.
- W4280494432 cites W2784716683 @default.
- W4280494432 cites W2786588688 @default.
- W4280494432 cites W2811128222 @default.
- W4280494432 cites W2889116806 @default.
- W4280494432 cites W2892013739 @default.
- W4280494432 cites W2900999361 @default.
- W4280494432 cites W2942760134 @default.
- W4280494432 cites W2947364316 @default.
- W4280494432 cites W2963420686 @default.
- W4280494432 cites W2964309882 @default.
- W4280494432 cites W2967790807 @default.
- W4280494432 cites W2979394359 @default.
- W4280494432 cites W2979827906 @default.
- W4280494432 cites W2982581155 @default.
- W4280494432 cites W2993280523 @default.
- W4280494432 cites W3003792425 @default.
- W4280494432 cites W3010735355 @default.
- W4280494432 cites W3017284404 @default.
- W4280494432 cites W3023623668 @default.
- W4280494432 cites W3033221365 @default.
- W4280494432 cites W3037211272 @default.
- W4280494432 cites W3039290057 @default.
- W4280494432 cites W3040152568 @default.
- W4280494432 cites W3043427770 @default.
- W4280494432 cites W3047389810 @default.
- W4280494432 cites W3048540441 @default.
- W4280494432 cites W3048802707 @default.
- W4280494432 cites W3082572255 @default.
- W4280494432 cites W3083027974 @default.
- W4280494432 cites W3085357733 @default.
- W4280494432 cites W3092256737 @default.
- W4280494432 cites W3093807592 @default.
- W4280494432 cites W3096339057 @default.
- W4280494432 cites W3101507774 @default.
- W4280494432 cites W3103656140 @default.
- W4280494432 cites W3107770003 @default.
- W4280494432 cites W3119832923 @default.
- W4280494432 cites W3120468399 @default.
- W4280494432 cites W3127715864 @default.
- W4280494432 cites W3134825748 @default.
- W4280494432 cites W3142788400 @default.
- W4280494432 cites W3150232681 @default.
- W4280494432 cites W3153148133 @default.
- W4280494432 cites W3186492510 @default.
- W4280494432 cites W3187087759 @default.
- W4280494432 cites W4281689014 @default.
- W4280494432 doi "https://doi.org/10.1038/s41598-022-12486-w" @default.
- W4280494432 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35595784" @default.
- W4280494432 hasPublicationYear "2022" @default.
- W4280494432 type Work @default.
- W4280494432 citedByCount "4" @default.
- W4280494432 countsByYear W42804944322023 @default.
- W4280494432 crossrefType "journal-article" @default.
- W4280494432 hasAuthorship W4280494432A5009259465 @default.
- W4280494432 hasAuthorship W4280494432A5013152556 @default.
- W4280494432 hasAuthorship W4280494432A5019808235 @default.
- W4280494432 hasAuthorship W4280494432A5022621431 @default.
- W4280494432 hasAuthorship W4280494432A5028806927 @default.
- W4280494432 hasAuthorship W4280494432A5052266166 @default.
- W4280494432 hasAuthorship W4280494432A5076393081 @default.
- W4280494432 hasAuthorship W4280494432A5087278931 @default.
- W4280494432 hasBestOaLocation W42804944321 @default.
- W4280494432 hasConcept C124504099 @default.
- W4280494432 hasConcept C126838900 @default.
- W4280494432 hasConcept C138885662 @default.
- W4280494432 hasConcept C153180895 @default.