Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280494495> ?p ?o ?g. }
- W4280494495 endingPage "2430" @default.
- W4280494495 startingPage "2430" @default.
- W4280494495 abstract "Space–time diversity (STD) has been widely applied in underwater acoustic (UWA) communication due to its exceptional anti-multipath performance. However, underwater noise can seriously affect the processing results of STD. The conventional filtering algorithms cannot deal with the nonlinear components of underwater noise and may not work well for complex-type signals. This study proposes an improved STD method with a joint noise-reduction learning model for the above issues. We construct a noise-reduction learning model dedicated to complex-type UWA signals in the first stage. Complex-type features based on UWA data are extracted for pre-processing data, and a conditional generative adversarial network (CGAN) is used as the backbone network for noise-reduction. Residual learning is used to accomplish noise cancellation and yield noise-reduction estimates. In the second stage, an STD structure based on a weight update strategy is constructed. The STD structure can further constrain the weights of the signals from the main path, enhance the reception of the main path, and suppress the multi-access interference (MAI) caused by the spread spectrum communication. Finally, combining the signals on each path can improve the communication quality of the system based on the principle of the maximum signal-to-interference plus noise ratio (SINR). The simulation and experiments on a lake showed that the proposed method is more robust over the changing signal-to-noise ratio (SNR) and has a lower bit error rate (BER) than conventional methods." @default.
- W4280494495 created "2022-05-22" @default.
- W4280494495 creator A5009748181 @default.
- W4280494495 creator A5052074459 @default.
- W4280494495 creator A5072257665 @default.
- W4280494495 creator A5075365534 @default.
- W4280494495 date "2022-05-19" @default.
- W4280494495 modified "2023-10-09" @default.
- W4280494495 title "A Joint Denoising Learning Model for Weight Update Space–Time Diversity Method" @default.
- W4280494495 cites W1857641855 @default.
- W4280494495 cites W1969345417 @default.
- W4280494495 cites W1973220693 @default.
- W4280494495 cites W1973958655 @default.
- W4280494495 cites W1976007883 @default.
- W4280494495 cites W1986580492 @default.
- W4280494495 cites W2004686860 @default.
- W4280494495 cites W2024496345 @default.
- W4280494495 cites W2051167297 @default.
- W4280494495 cites W2054371124 @default.
- W4280494495 cites W2100435186 @default.
- W4280494495 cites W2108543873 @default.
- W4280494495 cites W2108995755 @default.
- W4280494495 cites W2118943171 @default.
- W4280494495 cites W2120729642 @default.
- W4280494495 cites W2120919648 @default.
- W4280494495 cites W2125322593 @default.
- W4280494495 cites W2125659977 @default.
- W4280494495 cites W2127617367 @default.
- W4280494495 cites W2132103241 @default.
- W4280494495 cites W2132984323 @default.
- W4280494495 cites W2138986309 @default.
- W4280494495 cites W2139876546 @default.
- W4280494495 cites W2140441437 @default.
- W4280494495 cites W2142817701 @default.
- W4280494495 cites W2149472588 @default.
- W4280494495 cites W2150876933 @default.
- W4280494495 cites W2150980750 @default.
- W4280494495 cites W2153852861 @default.
- W4280494495 cites W2154528686 @default.
- W4280494495 cites W2161437547 @default.
- W4280494495 cites W2162587881 @default.
- W4280494495 cites W2162964270 @default.
- W4280494495 cites W2163624101 @default.
- W4280494495 cites W2163659919 @default.
- W4280494495 cites W2166951870 @default.
- W4280494495 cites W2167884509 @default.
- W4280494495 cites W2170076406 @default.
- W4280494495 cites W2170984917 @default.
- W4280494495 cites W2317964553 @default.
- W4280494495 cites W2377330351 @default.
- W4280494495 cites W2510572670 @default.
- W4280494495 cites W2562365416 @default.
- W4280494495 cites W2605433473 @default.
- W4280494495 cites W2612754176 @default.
- W4280494495 cites W2734915232 @default.
- W4280494495 cites W2748396923 @default.
- W4280494495 cites W2890860720 @default.
- W4280494495 cites W2904446313 @default.
- W4280494495 cites W2910883248 @default.
- W4280494495 cites W2912126472 @default.
- W4280494495 cites W2969412379 @default.
- W4280494495 cites W2970431866 @default.
- W4280494495 cites W2980795009 @default.
- W4280494495 cites W2986860520 @default.
- W4280494495 cites W2987190912 @default.
- W4280494495 cites W3007629215 @default.
- W4280494495 cites W3011163836 @default.
- W4280494495 cites W3019276773 @default.
- W4280494495 cites W3028082678 @default.
- W4280494495 cites W3035963388 @default.
- W4280494495 cites W3092240122 @default.
- W4280494495 cites W3092432372 @default.
- W4280494495 cites W3110267079 @default.
- W4280494495 cites W3183341415 @default.
- W4280494495 cites W4205973921 @default.
- W4280494495 cites W4243950641 @default.
- W4280494495 cites W4280528716 @default.
- W4280494495 doi "https://doi.org/10.3390/rs14102430" @default.
- W4280494495 hasPublicationYear "2022" @default.
- W4280494495 type Work @default.
- W4280494495 citedByCount "0" @default.
- W4280494495 crossrefType "journal-article" @default.
- W4280494495 hasAuthorship W4280494495A5009748181 @default.
- W4280494495 hasAuthorship W4280494495A5052074459 @default.
- W4280494495 hasAuthorship W4280494495A5072257665 @default.
- W4280494495 hasAuthorship W4280494495A5075365534 @default.
- W4280494495 hasBestOaLocation W42804944951 @default.
- W4280494495 hasConcept C111368507 @default.
- W4280494495 hasConcept C11413529 @default.
- W4280494495 hasConcept C115961682 @default.
- W4280494495 hasConcept C127162648 @default.
- W4280494495 hasConcept C127313418 @default.
- W4280494495 hasConcept C154945302 @default.
- W4280494495 hasConcept C161218011 @default.
- W4280494495 hasConcept C163294075 @default.
- W4280494495 hasConcept C169111936 @default.
- W4280494495 hasConcept C32022120 @default.
- W4280494495 hasConcept C41008148 @default.