Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280494743> ?p ?o ?g. }
- W4280494743 endingPage "1706" @default.
- W4280494743 startingPage "1706" @default.
- W4280494743 abstract "The heat transmission capabilities of hybrid nanofluids are superior to those of mono nanofluids. In addition to solar collectors and military equipment, they may be found in a number of areas including heat exchanger, automotive industry, transformer cooling and electronic cooling. The purpose of this study was to evaluate the significance of the higher order chemical reaction parameter on the radiative flow of hybrid nanofluid (polyethylene glycol (PEG)–water combination: base fluid and zirconium dioxide, magnesium oxide: nanoparticles) via a curved shrinking sheet with viscous dissipation. Flow-driven equations were transformed into nonlinear ODEs using appropriate similarity transmutations, and then solved using the bvp4c solver (MATLAB built-in function). The results of two scenarios, PEG−Water+ZrO2+MgO (hybrid nanofluid) and PEG−Water+ZrO2, (nanofluid) are reported. In order to draw important inferences about physical features, such as heat transfer rate, a correlation coefficient was used. The main findings of this study were that curvature parameter lowers fluid velocity, and Eckert number increases the temperature of fluid. It was observed that the volume fraction of nanoparticles enhances the skin friction coefficient and curvature parameter lessens the same. It was noticed that when curvature parameter (K) takes input in the range 0.5≤K≤2.5, the skin friction coefficient decreases at a rate of 1.46633 (i.e., 146.633%) (in the case of hybrid nanofluid) and 1.11236 (i.e., 111.236%) (in the case of nanofluid) per unit value of curvature parameter. Increasing rates in the skin friction parameter were 3.481179 (i.e., 348.1179%) (in the case of hybrid nanofluid) and 2.745679 (in the case of nanofluid) when the volume fraction of nanoparticle (ϕ1) takes input in the range 0≤ϕ1≤0.2. It was detected that, when Eckert number (Eck) increases, Nusselt number decreases. The decrement rates were observed as 1.41148 (i.e., 141.148%) (in the case of hybrid nanofluid) and 1.15337 (i.e., 153.337%) (in the case of nanofluid) when Eckert number takes input in the range 0≤Eck≤0.2. In case of hybrid nanofluid, it was discovered that the mass transfer rate increases at a rate of 1.497214 (i.e., 149.7214%) when chemical reaction (Kr) takes input in the range 0≤Kr≤0.2. In addition, we checked our findings against those of other researchers and discovered a respectable degree of agreement." @default.
- W4280494743 created "2022-05-22" @default.
- W4280494743 creator A5005526544 @default.
- W4280494743 creator A5024498395 @default.
- W4280494743 creator A5030026202 @default.
- W4280494743 creator A5044436578 @default.
- W4280494743 creator A5058669474 @default.
- W4280494743 creator A5078037189 @default.
- W4280494743 creator A5078782579 @default.
- W4280494743 creator A5084337960 @default.
- W4280494743 date "2022-05-16" @default.
- W4280494743 modified "2023-10-05" @default.
- W4280494743 title "Simulation of Dissipative Hybrid Nanofluid (PEG-Water + ZrO2 + MgO) Flow by a Curved Shrinking Sheet with Thermal Radiation and Higher Order Chemical Reaction" @default.
- W4280494743 cites W1998703763 @default.
- W4280494743 cites W2003125970 @default.
- W4280494743 cites W2025026416 @default.
- W4280494743 cites W2254696702 @default.
- W4280494743 cites W2559893557 @default.
- W4280494743 cites W2592246815 @default.
- W4280494743 cites W2606424970 @default.
- W4280494743 cites W2772701644 @default.
- W4280494743 cites W2780990865 @default.
- W4280494743 cites W2884109336 @default.
- W4280494743 cites W2896731492 @default.
- W4280494743 cites W2900860674 @default.
- W4280494743 cites W2907621795 @default.
- W4280494743 cites W2913871761 @default.
- W4280494743 cites W2914387196 @default.
- W4280494743 cites W2946678149 @default.
- W4280494743 cites W2969406422 @default.
- W4280494743 cites W2971460147 @default.
- W4280494743 cites W2976888614 @default.
- W4280494743 cites W2993470384 @default.
- W4280494743 cites W2999894532 @default.
- W4280494743 cites W3000404159 @default.
- W4280494743 cites W3003802392 @default.
- W4280494743 cites W3006841516 @default.
- W4280494743 cites W3008365724 @default.
- W4280494743 cites W3008789542 @default.
- W4280494743 cites W3014569927 @default.
- W4280494743 cites W3016745641 @default.
- W4280494743 cites W3017982722 @default.
- W4280494743 cites W3028641869 @default.
- W4280494743 cites W3046827813 @default.
- W4280494743 cites W3097435498 @default.
- W4280494743 cites W3100685644 @default.
- W4280494743 cites W3108020210 @default.
- W4280494743 cites W3118364681 @default.
- W4280494743 cites W3118396402 @default.
- W4280494743 cites W3130275748 @default.
- W4280494743 cites W3155991840 @default.
- W4280494743 cites W3209621548 @default.
- W4280494743 cites W4200163608 @default.
- W4280494743 cites W4200472592 @default.
- W4280494743 cites W4200500546 @default.
- W4280494743 cites W4206493051 @default.
- W4280494743 cites W4210940068 @default.
- W4280494743 cites W4220744791 @default.
- W4280494743 cites W4220761094 @default.
- W4280494743 cites W4221134352 @default.
- W4280494743 cites W4225537115 @default.
- W4280494743 doi "https://doi.org/10.3390/math10101706" @default.
- W4280494743 hasPublicationYear "2022" @default.
- W4280494743 type Work @default.
- W4280494743 citedByCount "8" @default.
- W4280494743 countsByYear W42804947432022 @default.
- W4280494743 countsByYear W42804947432023 @default.
- W4280494743 crossrefType "journal-article" @default.
- W4280494743 hasAuthorship W4280494743A5005526544 @default.
- W4280494743 hasAuthorship W4280494743A5024498395 @default.
- W4280494743 hasAuthorship W4280494743A5030026202 @default.
- W4280494743 hasAuthorship W4280494743A5044436578 @default.
- W4280494743 hasAuthorship W4280494743A5058669474 @default.
- W4280494743 hasAuthorship W4280494743A5078037189 @default.
- W4280494743 hasAuthorship W4280494743A5078782579 @default.
- W4280494743 hasAuthorship W4280494743A5084337960 @default.
- W4280494743 hasBestOaLocation W42804947431 @default.
- W4280494743 hasConcept C121332964 @default.
- W4280494743 hasConcept C130230704 @default.
- W4280494743 hasConcept C155672457 @default.
- W4280494743 hasConcept C159985019 @default.
- W4280494743 hasConcept C171250308 @default.
- W4280494743 hasConcept C182748727 @default.
- W4280494743 hasConcept C192562407 @default.
- W4280494743 hasConcept C195065555 @default.
- W4280494743 hasConcept C196558001 @default.
- W4280494743 hasConcept C21946209 @default.
- W4280494743 hasConcept C2524010 @default.
- W4280494743 hasConcept C33923547 @default.
- W4280494743 hasConcept C47376073 @default.
- W4280494743 hasConcept C57879066 @default.
- W4280494743 hasConcept C97355855 @default.
- W4280494743 hasConceptScore W4280494743C121332964 @default.
- W4280494743 hasConceptScore W4280494743C130230704 @default.
- W4280494743 hasConceptScore W4280494743C155672457 @default.
- W4280494743 hasConceptScore W4280494743C159985019 @default.
- W4280494743 hasConceptScore W4280494743C171250308 @default.
- W4280494743 hasConceptScore W4280494743C182748727 @default.