Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280494864> ?p ?o ?g. }
- W4280494864 abstract "During the COVID-19 pandemic, healthcare workers (HCWs) have faced unprecedented workloads and personal health risks leading to mental disorders and surges in sickness absence. Previous work has shown that interindividual differences in psychological resilience might explain why only some individuals are vulnerable to these consequences. However, no prognostic tools to predict individual HCW resilience during the pandemic have been developed. We deployed machine learning (ML) to predict psychological resilience during the pandemic. The models were trained in HCWs of the largest Finnish hospital, Helsinki University Hospital (HUS, N = 487), with a six-month follow-up, and prognostic generalizability was evaluated in two independent HCW validation samples (Social and Health Services in Kymenlaakso: Kymsote, N = 77 and the City of Helsinki, N = 322) with similar follow-ups never used for training the models. Using the most predictive items to predict future psychological resilience resulted in a balanced accuracy (BAC) of 72.7-74.3% in the HUS sample. Similar performances (BAC = 67-77%) were observed in the two independent validation samples. The models' predictions translated to a high probability of sickness absence during the pandemic. Our results provide the first evidence that ML techniques could be harnessed for the early detection of COVID-19-related distress among HCWs, thereby providing an avenue for potential targeted interventions." @default.
- W4280494864 created "2022-05-22" @default.
- W4280494864 creator A5007053723 @default.
- W4280494864 creator A5007075121 @default.
- W4280494864 creator A5041960114 @default.
- W4280494864 creator A5045922521 @default.
- W4280494864 creator A5055293818 @default.
- W4280494864 creator A5058684324 @default.
- W4280494864 creator A5058812327 @default.
- W4280494864 creator A5061497340 @default.
- W4280494864 creator A5062676694 @default.
- W4280494864 creator A5062926797 @default.
- W4280494864 creator A5066773313 @default.
- W4280494864 creator A5082874288 @default.
- W4280494864 creator A5084094250 @default.
- W4280494864 creator A5091502288 @default.
- W4280494864 date "2022-05-16" @default.
- W4280494864 modified "2023-10-18" @default.
- W4280494864 title "A machine learning approach to predict resilience and sickness absence in the healthcare workforce during the COVID-19 pandemic" @default.
- W4280494864 cites W1677539104 @default.
- W4280494864 cites W1887790309 @default.
- W4280494864 cites W1980276147 @default.
- W4280494864 cites W1985334364 @default.
- W4280494864 cites W2006617902 @default.
- W4280494864 cites W2009912902 @default.
- W4280494864 cites W2017337590 @default.
- W4280494864 cites W2033034729 @default.
- W4280494864 cites W2043724834 @default.
- W4280494864 cites W2107337543 @default.
- W4280494864 cites W2543358967 @default.
- W4280494864 cites W2560887271 @default.
- W4280494864 cites W2787427645 @default.
- W4280494864 cites W2807948025 @default.
- W4280494864 cites W2897910538 @default.
- W4280494864 cites W3006807901 @default.
- W4280494864 cites W3010350103 @default.
- W4280494864 cites W3012832369 @default.
- W4280494864 cites W3013752275 @default.
- W4280494864 cites W3014582523 @default.
- W4280494864 cites W3015147817 @default.
- W4280494864 cites W3015811538 @default.
- W4280494864 cites W3022646174 @default.
- W4280494864 cites W3086990166 @default.
- W4280494864 cites W3093429938 @default.
- W4280494864 cites W3096168896 @default.
- W4280494864 cites W3104177337 @default.
- W4280494864 cites W3108636332 @default.
- W4280494864 cites W3119259386 @default.
- W4280494864 cites W3119464161 @default.
- W4280494864 cites W3126707397 @default.
- W4280494864 cites W3127031811 @default.
- W4280494864 cites W3133848384 @default.
- W4280494864 cites W3133985703 @default.
- W4280494864 cites W3139257442 @default.
- W4280494864 cites W3142914274 @default.
- W4280494864 cites W3150035760 @default.
- W4280494864 cites W3152251636 @default.
- W4280494864 cites W3197719535 @default.
- W4280494864 cites W4230096730 @default.
- W4280494864 doi "https://doi.org/10.1038/s41598-022-12107-6" @default.
- W4280494864 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35577884" @default.
- W4280494864 hasPublicationYear "2022" @default.
- W4280494864 type Work @default.
- W4280494864 citedByCount "3" @default.
- W4280494864 countsByYear W42804948642022 @default.
- W4280494864 countsByYear W42804948642023 @default.
- W4280494864 crossrefType "journal-article" @default.
- W4280494864 hasAuthorship W4280494864A5007053723 @default.
- W4280494864 hasAuthorship W4280494864A5007075121 @default.
- W4280494864 hasAuthorship W4280494864A5041960114 @default.
- W4280494864 hasAuthorship W4280494864A5045922521 @default.
- W4280494864 hasAuthorship W4280494864A5055293818 @default.
- W4280494864 hasAuthorship W4280494864A5058684324 @default.
- W4280494864 hasAuthorship W4280494864A5058812327 @default.
- W4280494864 hasAuthorship W4280494864A5061497340 @default.
- W4280494864 hasAuthorship W4280494864A5062676694 @default.
- W4280494864 hasAuthorship W4280494864A5062926797 @default.
- W4280494864 hasAuthorship W4280494864A5066773313 @default.
- W4280494864 hasAuthorship W4280494864A5082874288 @default.
- W4280494864 hasAuthorship W4280494864A5084094250 @default.
- W4280494864 hasAuthorship W4280494864A5091502288 @default.
- W4280494864 hasBestOaLocation W42804948641 @default.
- W4280494864 hasConcept C118552586 @default.
- W4280494864 hasConcept C121332964 @default.
- W4280494864 hasConcept C134362201 @default.
- W4280494864 hasConcept C137176749 @default.
- W4280494864 hasConcept C138496976 @default.
- W4280494864 hasConcept C142724271 @default.
- W4280494864 hasConcept C15744967 @default.
- W4280494864 hasConcept C160735492 @default.
- W4280494864 hasConcept C17744445 @default.
- W4280494864 hasConcept C199539241 @default.
- W4280494864 hasConcept C27158222 @default.
- W4280494864 hasConcept C27415008 @default.
- W4280494864 hasConcept C2778139618 @default.
- W4280494864 hasConcept C2779134260 @default.
- W4280494864 hasConcept C2779585090 @default.
- W4280494864 hasConcept C3008058167 @default.
- W4280494864 hasConcept C524204448 @default.
- W4280494864 hasConcept C71924100 @default.