Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280494910> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4280494910 endingPage "103791" @default.
- W4280494910 startingPage "103791" @default.
- W4280494910 abstract "Cancer is the uncontrolled growth of abnormal cells that do not function as normal cells. Lung cancer is the leading cause of cancer death in the world, so early detection of lung disease will have a major impact on the likelihood of a definitive cure. Computed Tomography (CT) has been identified as one of the best imaging techniques. Various tools available for medical image processing include data collection in the form of images and algorithms for image analysis and system testing. This study proposes a new diagnosis system for lung cancer based on image processing and artificial intelligence from CT-scan images. In the present study, after noise reduction based on wiener Filtering, Alexnet has been utilized for diagnosing healthy and cancerous cases. The system also uses optimum terms of different features, including Gabor wavelet transform, GLCM, and GLRM to be used in replacing with the network feature extraction part. The study also uses a new modified version of the Satin Bowerbird Optimization Algorithm for optimal designing of the Alexnet architecture and optimal selection of the features. Simulation results of the proposed method on the RIDER Lung CT collection database and the comparison results with some other state-of-the-art methods show that the proposed method provides a satisfying tool for lung cancer diagnosis. The comparison results show that the proposed method with 95.96% accuracy shows the highest value toward the others. The results also show that a higher harmonic mean value for the proposed method with higher F1-score of the method toward the others. Plus, the highest test recall results (98.06%) of the proposed method indicate its higher rate of relevant instances that are retrieved for the images. Therefore, using the proposed method can provide an efficient tool for optimal diagnosis of the Lung Cancer from the CT Images. this shows that using the proposed method as a new deep-learning-based methodology, can provide higher accuracy and can resolve the big problem of optimal hyperparameters selection of the deep-learning-based methodology techniques for the aimed case." @default.
- W4280494910 created "2022-05-22" @default.
- W4280494910 creator A5028570400 @default.
- W4280494910 creator A5040487721 @default.
- W4280494910 creator A5082322039 @default.
- W4280494910 date "2022-08-01" @default.
- W4280494910 modified "2023-10-18" @default.
- W4280494910 title "Lung cancer diagnosis in CT images based on Alexnet optimized by modified Bowerbird optimization algorithm" @default.
- W4280494910 cites W1530899844 @default.
- W4280494910 cites W1983782164 @default.
- W4280494910 cites W2056811412 @default.
- W4280494910 cites W2067959276 @default.
- W4280494910 cites W2071093112 @default.
- W4280494910 cites W2097528647 @default.
- W4280494910 cites W2107886654 @default.
- W4280494910 cites W2111638420 @default.
- W4280494910 cites W2132014319 @default.
- W4280494910 cites W2563045807 @default.
- W4280494910 cites W2686419387 @default.
- W4280494910 cites W2765668510 @default.
- W4280494910 cites W2793060776 @default.
- W4280494910 cites W2795785493 @default.
- W4280494910 cites W2807821935 @default.
- W4280494910 cites W2807890917 @default.
- W4280494910 cites W2808150301 @default.
- W4280494910 cites W2883383020 @default.
- W4280494910 cites W2901073115 @default.
- W4280494910 cites W2910713102 @default.
- W4280494910 cites W2911910296 @default.
- W4280494910 cites W2921785317 @default.
- W4280494910 cites W2945759189 @default.
- W4280494910 cites W2947204379 @default.
- W4280494910 cites W2964897044 @default.
- W4280494910 cites W2965503466 @default.
- W4280494910 cites W2971366156 @default.
- W4280494910 cites W2979433804 @default.
- W4280494910 cites W3036257754 @default.
- W4280494910 cites W3082967565 @default.
- W4280494910 cites W3092059570 @default.
- W4280494910 cites W3092431010 @default.
- W4280494910 cites W3094110867 @default.
- W4280494910 cites W3169963035 @default.
- W4280494910 cites W3171074139 @default.
- W4280494910 cites W3212544916 @default.
- W4280494910 cites W4220759287 @default.
- W4280494910 doi "https://doi.org/10.1016/j.bspc.2022.103791" @default.
- W4280494910 hasPublicationYear "2022" @default.
- W4280494910 type Work @default.
- W4280494910 citedByCount "16" @default.
- W4280494910 countsByYear W42804949102022 @default.
- W4280494910 countsByYear W42804949102023 @default.
- W4280494910 crossrefType "journal-article" @default.
- W4280494910 hasAuthorship W4280494910A5028570400 @default.
- W4280494910 hasAuthorship W4280494910A5040487721 @default.
- W4280494910 hasAuthorship W4280494910A5082322039 @default.
- W4280494910 hasConcept C11413529 @default.
- W4280494910 hasConcept C115961682 @default.
- W4280494910 hasConcept C142724271 @default.
- W4280494910 hasConcept C153180895 @default.
- W4280494910 hasConcept C154945302 @default.
- W4280494910 hasConcept C2776256026 @default.
- W4280494910 hasConcept C41008148 @default.
- W4280494910 hasConcept C71924100 @default.
- W4280494910 hasConcept C99498987 @default.
- W4280494910 hasConceptScore W4280494910C11413529 @default.
- W4280494910 hasConceptScore W4280494910C115961682 @default.
- W4280494910 hasConceptScore W4280494910C142724271 @default.
- W4280494910 hasConceptScore W4280494910C153180895 @default.
- W4280494910 hasConceptScore W4280494910C154945302 @default.
- W4280494910 hasConceptScore W4280494910C2776256026 @default.
- W4280494910 hasConceptScore W4280494910C41008148 @default.
- W4280494910 hasConceptScore W4280494910C71924100 @default.
- W4280494910 hasConceptScore W4280494910C99498987 @default.
- W4280494910 hasLocation W42804949101 @default.
- W4280494910 hasOpenAccess W4280494910 @default.
- W4280494910 hasPrimaryLocation W42804949101 @default.
- W4280494910 hasRelatedWork W2033914206 @default.
- W4280494910 hasRelatedWork W2042327336 @default.
- W4280494910 hasRelatedWork W2046077695 @default.
- W4280494910 hasRelatedWork W2146076056 @default.
- W4280494910 hasRelatedWork W2163831990 @default.
- W4280494910 hasRelatedWork W2378160586 @default.
- W4280494910 hasRelatedWork W2996038082 @default.
- W4280494910 hasRelatedWork W3003836766 @default.
- W4280494910 hasRelatedWork W3047965787 @default.
- W4280494910 hasRelatedWork W3184582087 @default.
- W4280494910 hasVolume "77" @default.
- W4280494910 isParatext "false" @default.
- W4280494910 isRetracted "false" @default.
- W4280494910 workType "article" @default.