Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280494974> ?p ?o ?g. }
- W4280494974 abstract "Abstract Background Deep learning enables accurate high-resolution mapping of cells and tissue structures that can serve as the foundation of interpretable machine-learning models for computational pathology. However, generating adequate labels for these structures is a critical barrier, given the time and effort required from pathologists. Results This article describes a novel collaborative framework for engaging crowds of medical students and pathologists to produce quality labels for cell nuclei. We used this approach to produce the NuCLS dataset, containing >220,000 annotations of cell nuclei in breast cancers. This builds on prior work labeling tissue regions to produce an integrated tissue region- and cell-level annotation dataset for training that is the largest such resource for multi-scale analysis of breast cancer histology. This article presents data and analysis results for single and multi-rater annotations from both non-experts and pathologists. We present a novel workflow that uses algorithmic suggestions to collect accurate segmentation data without the need for laborious manual tracing of nuclei. Our results indicate that even noisy algorithmic suggestions do not adversely affect pathologist accuracy and can help non-experts improve annotation quality. We also present a new approach for inferring truth from multiple raters and show that non-experts can produce accurate annotations for visually distinctive classes. Conclusions This study is the most extensive systematic exploration of the large-scale use of wisdom-of-the-crowd approaches to generate data for computational pathology applications." @default.
- W4280494974 created "2022-05-22" @default.
- W4280494974 creator A5000566100 @default.
- W4280494974 creator A5003745492 @default.
- W4280494974 creator A5005053437 @default.
- W4280494974 creator A5005397420 @default.
- W4280494974 creator A5005413763 @default.
- W4280494974 creator A5008655833 @default.
- W4280494974 creator A5008957868 @default.
- W4280494974 creator A5009975086 @default.
- W4280494974 creator A5010357295 @default.
- W4280494974 creator A5011779751 @default.
- W4280494974 creator A5013117011 @default.
- W4280494974 creator A5014823104 @default.
- W4280494974 creator A5017897655 @default.
- W4280494974 creator A5017947351 @default.
- W4280494974 creator A5020498387 @default.
- W4280494974 creator A5022172842 @default.
- W4280494974 creator A5022944193 @default.
- W4280494974 creator A5026110775 @default.
- W4280494974 creator A5033769099 @default.
- W4280494974 creator A5033852324 @default.
- W4280494974 creator A5034820084 @default.
- W4280494974 creator A5037259647 @default.
- W4280494974 creator A5038134322 @default.
- W4280494974 creator A5039535206 @default.
- W4280494974 creator A5047071732 @default.
- W4280494974 creator A5047972190 @default.
- W4280494974 creator A5059524157 @default.
- W4280494974 creator A5061764287 @default.
- W4280494974 creator A5068617105 @default.
- W4280494974 creator A5069706500 @default.
- W4280494974 creator A5070011974 @default.
- W4280494974 creator A5073937900 @default.
- W4280494974 creator A5080729741 @default.
- W4280494974 creator A5084310616 @default.
- W4280494974 creator A5087036320 @default.
- W4280494974 creator A5091389599 @default.
- W4280494974 creator A5091757381 @default.
- W4280494974 date "2022-01-01" @default.
- W4280494974 modified "2023-10-15" @default.
- W4280494974 title "NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer" @default.
- W4280494974 cites W173931755 @default.
- W4280494974 cites W190927549 @default.
- W4280494974 cites W1972978214 @default.
- W4280494974 cites W1975879668 @default.
- W4280494974 cites W2033257011 @default.
- W4280494974 cites W2044317262 @default.
- W4280494974 cites W2053154970 @default.
- W4280494974 cites W2110243528 @default.
- W4280494974 cites W2113933145 @default.
- W4280494974 cites W2120431466 @default.
- W4280494974 cites W2132162500 @default.
- W4280494974 cites W2133059825 @default.
- W4280494974 cites W2134560790 @default.
- W4280494974 cites W2134993189 @default.
- W4280494974 cites W2344654247 @default.
- W4280494974 cites W2504150216 @default.
- W4280494974 cites W2552414813 @default.
- W4280494974 cites W2554692997 @default.
- W4280494974 cites W2585226541 @default.
- W4280494974 cites W2592929672 @default.
- W4280494974 cites W2765468373 @default.
- W4280494974 cites W2765774350 @default.
- W4280494974 cites W2796409016 @default.
- W4280494974 cites W2805886241 @default.
- W4280494974 cites W2884988214 @default.
- W4280494974 cites W2921500370 @default.
- W4280494974 cites W2922239620 @default.
- W4280494974 cites W2948141910 @default.
- W4280494974 cites W2951934944 @default.
- W4280494974 cites W2952317280 @default.
- W4280494974 cites W2955737766 @default.
- W4280494974 cites W2956228567 @default.
- W4280494974 cites W2962804068 @default.
- W4280494974 cites W2964756323 @default.
- W4280494974 cites W2974825848 @default.
- W4280494974 cites W2981994674 @default.
- W4280494974 cites W3006954975 @default.
- W4280494974 cites W3008782862 @default.
- W4280494974 cites W3025630280 @default.
- W4280494974 cites W3040784645 @default.
- W4280494974 cites W3099287508 @default.
- W4280494974 cites W3128210037 @default.
- W4280494974 cites W3133782060 @default.
- W4280494974 cites W3203183413 @default.
- W4280494974 cites W3212232455 @default.
- W4280494974 cites W4200040427 @default.
- W4280494974 cites W4226135249 @default.
- W4280494974 cites W4252684946 @default.
- W4280494974 cites W4280494974 @default.
- W4280494974 cites W4362223627 @default.
- W4280494974 cites W602399427 @default.
- W4280494974 cites W9014458 @default.
- W4280494974 doi "https://doi.org/10.1093/gigascience/giac037" @default.
- W4280494974 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35579553" @default.
- W4280494974 hasPublicationYear "2022" @default.
- W4280494974 type Work @default.
- W4280494974 citedByCount "25" @default.
- W4280494974 countsByYear W42804949742021 @default.