Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280494994> ?p ?o ?g. }
- W4280494994 endingPage "100169" @default.
- W4280494994 startingPage "100169" @default.
- W4280494994 abstract "To automatically predict the postoperative appearance of blepharoptosis surgeries and evaluate the generated images both objectively and subjectively in a clinical setting.Cross-sectional study.This study involved 970 pairs of images of 450 eyes from 362 patients undergoing blepharoptosis surgeries at our oculoplastic clinic between June 2016 and April 2021.Preoperative and postoperative facial images were used to train and test the deep learning-based postoperative appearance prediction system (POAP) consisting of 4 modules, including the data processing module (P), ocular detection module (O), analyzing module (A), and prediction module (P).The overall and local performance of the system were automatically quantified by the overlap ratio of eyes and by lid contour analysis using midpupil lid distances (MPLDs). Four ophthalmologists and 6 patients were invited to complete a satisfaction scale and a similarity survey with the test set of 75 pairs of images on each scale.The overall performance (mean overlap ratio) was 0.858 ± 0.082. The corresponding multiple radial MPLDs showed no significant differences between the predictive results and the real samples at any angle (P > 0.05). The absolute error between the predicted marginal reflex distance-1 (MRD1) and the actual postoperative MRD1 ranged from 0.013 mm to 1.900 mm (95% within 1 mm, 80% within 0.75 mm). The participating experts and patients were satisfied with 268 pairs (35.7%) and highly satisfied with most of the outcomes (420 pairs, 56.0%). The similarity score was 9.43 ± 0.79.The fully automatic deep learning-based method can predict postoperative appearance for blepharoptosis surgery with high accuracy and satisfaction, thus offering the patients with blepharoptosis an opportunity to understand the expected change more clearly and to relieve anxiety. In addition, this system could be used to assist patients in selecting surgeons and the recovery phase of daily living, which may offer guidance for inexperienced surgeons as well." @default.
- W4280494994 created "2022-05-22" @default.
- W4280494994 creator A5016183535 @default.
- W4280494994 creator A5021818013 @default.
- W4280494994 creator A5040588043 @default.
- W4280494994 creator A5051971478 @default.
- W4280494994 creator A5053696609 @default.
- W4280494994 creator A5059514377 @default.
- W4280494994 creator A5067368513 @default.
- W4280494994 creator A5089477958 @default.
- W4280494994 date "2022-09-01" @default.
- W4280494994 modified "2023-10-01" @default.
- W4280494994 title "A Fully Automatic Postoperative Appearance Prediction System for Blepharoptosis Surgery with Image-based Deep Learning" @default.
- W4280494994 cites W1968159507 @default.
- W4280494994 cites W1978886533 @default.
- W4280494994 cites W1987786913 @default.
- W4280494994 cites W2023529850 @default.
- W4280494994 cites W2030913886 @default.
- W4280494994 cites W2068057588 @default.
- W4280494994 cites W2141755655 @default.
- W4280494994 cites W2163054398 @default.
- W4280494994 cites W2320259522 @default.
- W4280494994 cites W2323649620 @default.
- W4280494994 cites W2332419034 @default.
- W4280494994 cites W2345740540 @default.
- W4280494994 cites W2524781484 @default.
- W4280494994 cites W2594556680 @default.
- W4280494994 cites W2604815760 @default.
- W4280494994 cites W2743780012 @default.
- W4280494994 cites W2748739903 @default.
- W4280494994 cites W2783056092 @default.
- W4280494994 cites W2798401174 @default.
- W4280494994 cites W2800812237 @default.
- W4280494994 cites W2803589901 @default.
- W4280494994 cites W2893531431 @default.
- W4280494994 cites W2947405326 @default.
- W4280494994 cites W2992400503 @default.
- W4280494994 cites W3002195828 @default.
- W4280494994 cites W3109235983 @default.
- W4280494994 cites W3137756718 @default.
- W4280494994 cites W3142883557 @default.
- W4280494994 cites W3158388127 @default.
- W4280494994 cites W3171429286 @default.
- W4280494994 cites W3216105204 @default.
- W4280494994 doi "https://doi.org/10.1016/j.xops.2022.100169" @default.
- W4280494994 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36245755" @default.
- W4280494994 hasPublicationYear "2022" @default.
- W4280494994 type Work @default.
- W4280494994 citedByCount "1" @default.
- W4280494994 countsByYear W42804949942023 @default.
- W4280494994 crossrefType "journal-article" @default.
- W4280494994 hasAuthorship W4280494994A5016183535 @default.
- W4280494994 hasAuthorship W4280494994A5021818013 @default.
- W4280494994 hasAuthorship W4280494994A5040588043 @default.
- W4280494994 hasAuthorship W4280494994A5051971478 @default.
- W4280494994 hasAuthorship W4280494994A5053696609 @default.
- W4280494994 hasAuthorship W4280494994A5059514377 @default.
- W4280494994 hasAuthorship W4280494994A5067368513 @default.
- W4280494994 hasAuthorship W4280494994A5089477958 @default.
- W4280494994 hasBestOaLocation W42804949941 @default.
- W4280494994 hasConcept C103278499 @default.
- W4280494994 hasConcept C105795698 @default.
- W4280494994 hasConcept C108583219 @default.
- W4280494994 hasConcept C115961682 @default.
- W4280494994 hasConcept C139945424 @default.
- W4280494994 hasConcept C141071460 @default.
- W4280494994 hasConcept C153180895 @default.
- W4280494994 hasConcept C154945302 @default.
- W4280494994 hasConcept C188154048 @default.
- W4280494994 hasConcept C33923547 @default.
- W4280494994 hasConcept C41008148 @default.
- W4280494994 hasConcept C71924100 @default.
- W4280494994 hasConceptScore W4280494994C103278499 @default.
- W4280494994 hasConceptScore W4280494994C105795698 @default.
- W4280494994 hasConceptScore W4280494994C108583219 @default.
- W4280494994 hasConceptScore W4280494994C115961682 @default.
- W4280494994 hasConceptScore W4280494994C139945424 @default.
- W4280494994 hasConceptScore W4280494994C141071460 @default.
- W4280494994 hasConceptScore W4280494994C153180895 @default.
- W4280494994 hasConceptScore W4280494994C154945302 @default.
- W4280494994 hasConceptScore W4280494994C188154048 @default.
- W4280494994 hasConceptScore W4280494994C33923547 @default.
- W4280494994 hasConceptScore W4280494994C41008148 @default.
- W4280494994 hasConceptScore W4280494994C71924100 @default.
- W4280494994 hasIssue "3" @default.
- W4280494994 hasLocation W42804949941 @default.
- W4280494994 hasLocation W42804949942 @default.
- W4280494994 hasLocation W42804949943 @default.
- W4280494994 hasOpenAccess W4280494994 @default.
- W4280494994 hasPrimaryLocation W42804949941 @default.
- W4280494994 hasRelatedWork W2003938723 @default.
- W4280494994 hasRelatedWork W2047967234 @default.
- W4280494994 hasRelatedWork W2118496982 @default.
- W4280494994 hasRelatedWork W2364998975 @default.
- W4280494994 hasRelatedWork W2439875401 @default.
- W4280494994 hasRelatedWork W2738221750 @default.
- W4280494994 hasRelatedWork W2748952813 @default.
- W4280494994 hasRelatedWork W2899084033 @default.