Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280495093> ?p ?o ?g. }
- W4280495093 endingPage "109" @default.
- W4280495093 startingPage "101" @default.
- W4280495093 abstract "Chinese herbal formulae are the heritage of traditional Chinese medicine (TCM) in treating diseases through thousands of years. The formula function is not just a simple herbal efficacy addition, but produces complex and nonlinear relationships between different herbs and their overall efficacy, which brings challenges to the formula efficacy analysis. In our study, we proposed a model called HPE-GCN that combines graph convolutional networks (GCN) with TCM-defined herbal properties (TCM-HPs) to predict formulae efficacy. In addition, to process the unstructured natural language in the formula text, we proposed a weighting calculation method related to herb frequency and the number of herbs in a formula called Formula-Herb dependence degree (FHDD), to assess the dependency degree of a formula with its herbs. In our research, 214 classic tonic formulae from ancient TCM books such as Synopsis of the Golden Chamber, Jingyue's Complete Works and the Golden Mirror of Medicin were collected as datasets. The performance of HPE-GCN on multi-classification of tonic formulae reached the best result compared with classic machine learning models, such as support vector machine, naive Bayes, logistic regression, gradient boosting decision tree, and K-nearest neighbors. The evaluated index Macro-Precision, Macro-Recall, Macro-F1 of HPE-GCN on the test set were 87.70%, 84.08% and 83.51% respectively, increased by 7.27%, 7.41% and 7.30% respectively from second best compared models. GCN has the advantage of low-dimensional feature expression for herbs and formulae, and is an effective analysis tool for TCM research. HPE-GCN integrates TCM-HPs and fits the complex nonlinear mapping relationship between TCM-HPs and formulae efficacy, which provides new ideas for related research." @default.
- W4280495093 created "2022-05-22" @default.
- W4280495093 creator A5001502739 @default.
- W4280495093 creator A5030814492 @default.
- W4280495093 creator A5057084324 @default.
- W4280495093 creator A5067962499 @default.
- W4280495093 date "2022-08-01" @default.
- W4280495093 modified "2023-10-06" @default.
- W4280495093 title "HPE-GCN: Predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties" @default.
- W4280495093 cites W1005454186 @default.
- W4280495093 cites W1607113177 @default.
- W4280495093 cites W1981976602 @default.
- W4280495093 cites W1989719658 @default.
- W4280495093 cites W2021720306 @default.
- W4280495093 cites W2034657141 @default.
- W4280495093 cites W2049084337 @default.
- W4280495093 cites W2049334526 @default.
- W4280495093 cites W2101491865 @default.
- W4280495093 cites W2111786937 @default.
- W4280495093 cites W2151040995 @default.
- W4280495093 cites W2603741026 @default.
- W4280495093 cites W2606436201 @default.
- W4280495093 cites W2735690143 @default.
- W4280495093 cites W2750772441 @default.
- W4280495093 cites W2752747624 @default.
- W4280495093 cites W2788577764 @default.
- W4280495093 cites W2791750046 @default.
- W4280495093 cites W2900620667 @default.
- W4280495093 cites W2950354111 @default.
- W4280495093 cites W2964129753 @default.
- W4280495093 cites W2980904865 @default.
- W4280495093 cites W2990378985 @default.
- W4280495093 cites W2995910934 @default.
- W4280495093 cites W3007364240 @default.
- W4280495093 cites W3016304771 @default.
- W4280495093 cites W3023406784 @default.
- W4280495093 cites W3111602606 @default.
- W4280495093 cites W3118960049 @default.
- W4280495093 cites W3133489948 @default.
- W4280495093 cites W3133861024 @default.
- W4280495093 cites W3138074702 @default.
- W4280495093 cites W3146960368 @default.
- W4280495093 cites W3169268368 @default.
- W4280495093 cites W3211726303 @default.
- W4280495093 cites W3213004751 @default.
- W4280495093 cites W3214433768 @default.
- W4280495093 cites W4210257598 @default.
- W4280495093 cites W4212953269 @default.
- W4280495093 cites W96003883 @default.
- W4280495093 cites W4200600210 @default.
- W4280495093 doi "https://doi.org/10.1016/j.ymeth.2022.05.003" @default.
- W4280495093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35597515" @default.
- W4280495093 hasPublicationYear "2022" @default.
- W4280495093 type Work @default.
- W4280495093 citedByCount "4" @default.
- W4280495093 countsByYear W42804950932023 @default.
- W4280495093 crossrefType "journal-article" @default.
- W4280495093 hasAuthorship W4280495093A5001502739 @default.
- W4280495093 hasAuthorship W4280495093A5030814492 @default.
- W4280495093 hasAuthorship W4280495093A5057084324 @default.
- W4280495093 hasAuthorship W4280495093A5067962499 @default.
- W4280495093 hasConcept C119857082 @default.
- W4280495093 hasConcept C12267149 @default.
- W4280495093 hasConcept C126838900 @default.
- W4280495093 hasConcept C154945302 @default.
- W4280495093 hasConcept C183115368 @default.
- W4280495093 hasConcept C33923547 @default.
- W4280495093 hasConcept C41008148 @default.
- W4280495093 hasConcept C52001869 @default.
- W4280495093 hasConcept C556039675 @default.
- W4280495093 hasConcept C71924100 @default.
- W4280495093 hasConcept C84525736 @default.
- W4280495093 hasConceptScore W4280495093C119857082 @default.
- W4280495093 hasConceptScore W4280495093C12267149 @default.
- W4280495093 hasConceptScore W4280495093C126838900 @default.
- W4280495093 hasConceptScore W4280495093C154945302 @default.
- W4280495093 hasConceptScore W4280495093C183115368 @default.
- W4280495093 hasConceptScore W4280495093C33923547 @default.
- W4280495093 hasConceptScore W4280495093C41008148 @default.
- W4280495093 hasConceptScore W4280495093C52001869 @default.
- W4280495093 hasConceptScore W4280495093C556039675 @default.
- W4280495093 hasConceptScore W4280495093C71924100 @default.
- W4280495093 hasConceptScore W4280495093C84525736 @default.
- W4280495093 hasLocation W42804950931 @default.
- W4280495093 hasLocation W42804950932 @default.
- W4280495093 hasOpenAccess W4280495093 @default.
- W4280495093 hasPrimaryLocation W42804950931 @default.
- W4280495093 hasRelatedWork W1184238669 @default.
- W4280495093 hasRelatedWork W1989494794 @default.
- W4280495093 hasRelatedWork W2122031327 @default.
- W4280495093 hasRelatedWork W2771255398 @default.
- W4280495093 hasRelatedWork W2930428186 @default.
- W4280495093 hasRelatedWork W2966195860 @default.
- W4280495093 hasRelatedWork W3125536479 @default.
- W4280495093 hasRelatedWork W3200027047 @default.
- W4280495093 hasRelatedWork W4224922629 @default.
- W4280495093 hasRelatedWork W4385770464 @default.
- W4280495093 hasVolume "204" @default.