Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280495576> ?p ?o ?g. }
- W4280495576 endingPage "458" @default.
- W4280495576 startingPage "449" @default.
- W4280495576 abstract "Pharmacovigilance improves patient safety by detecting and preventing adverse drug events. However, challenges exist that limit adverse drug event detection, resulting in many adverse drug events being underreported or inaccurately reported. One challenge includes having access to large data sets from various sources including electronic health records and wearable medical devices. Artificial intelligence, including machine learning methods, such as natural language processing and deep learning, can detect and extract information about adverse drug events, thus automating the pharmacovigilance process and improving the surveillance of known and documented adverse drug events. In addition, with the increased demand for telehealth services, for managing both acute and chronic diseases, artificial intelligence methods can play a role in detecting and preventing adverse drug events. In this review, we discuss two use cases of how artificial intelligence methods may be useful to improve the quality of pharmacovigilance and the role of artificial intelligence in telehealth practices." @default.
- W4280495576 created "2022-05-22" @default.
- W4280495576 creator A5020737811 @default.
- W4280495576 creator A5022854609 @default.
- W4280495576 creator A5036110536 @default.
- W4280495576 creator A5051376406 @default.
- W4280495576 creator A5062027542 @default.
- W4280495576 creator A5067061506 @default.
- W4280495576 date "2022-05-01" @default.
- W4280495576 modified "2023-10-16" @default.
- W4280495576 title "Intelligent Telehealth in Pharmacovigilance: A Future Perspective" @default.
- W4280495576 cites W1915502973 @default.
- W4280495576 cites W1949215780 @default.
- W4280495576 cites W1959452164 @default.
- W4280495576 cites W1970039259 @default.
- W4280495576 cites W1980156644 @default.
- W4280495576 cites W1980388684 @default.
- W4280495576 cites W1984006940 @default.
- W4280495576 cites W2006217724 @default.
- W4280495576 cites W2009890917 @default.
- W4280495576 cites W2022909531 @default.
- W4280495576 cites W2025980472 @default.
- W4280495576 cites W2041222168 @default.
- W4280495576 cites W2086687976 @default.
- W4280495576 cites W2087076652 @default.
- W4280495576 cites W2099437367 @default.
- W4280495576 cites W2119839346 @default.
- W4280495576 cites W2125847307 @default.
- W4280495576 cites W2127385343 @default.
- W4280495576 cites W2133547436 @default.
- W4280495576 cites W2137169173 @default.
- W4280495576 cites W2144162573 @default.
- W4280495576 cites W2150898927 @default.
- W4280495576 cites W2159636537 @default.
- W4280495576 cites W2160194473 @default.
- W4280495576 cites W2164105883 @default.
- W4280495576 cites W2168724896 @default.
- W4280495576 cites W2183234860 @default.
- W4280495576 cites W2190183719 @default.
- W4280495576 cites W2382298227 @default.
- W4280495576 cites W2610332124 @default.
- W4280495576 cites W2656335897 @default.
- W4280495576 cites W2664267452 @default.
- W4280495576 cites W2762469592 @default.
- W4280495576 cites W2765532734 @default.
- W4280495576 cites W2779051611 @default.
- W4280495576 cites W2780682329 @default.
- W4280495576 cites W2792631875 @default.
- W4280495576 cites W2793588040 @default.
- W4280495576 cites W2801322919 @default.
- W4280495576 cites W2805225102 @default.
- W4280495576 cites W2806701421 @default.
- W4280495576 cites W2809603593 @default.
- W4280495576 cites W2886532741 @default.
- W4280495576 cites W2891725240 @default.
- W4280495576 cites W2894764274 @default.
- W4280495576 cites W2895763047 @default.
- W4280495576 cites W2904451610 @default.
- W4280495576 cites W2908038241 @default.
- W4280495576 cites W2909597216 @default.
- W4280495576 cites W2910326837 @default.
- W4280495576 cites W2911408949 @default.
- W4280495576 cites W2919115771 @default.
- W4280495576 cites W2921671163 @default.
- W4280495576 cites W2922082445 @default.
- W4280495576 cites W2931993265 @default.
- W4280495576 cites W2944692096 @default.
- W4280495576 cites W2947903144 @default.
- W4280495576 cites W2958795513 @default.
- W4280495576 cites W2964189045 @default.
- W4280495576 cites W2966194224 @default.
- W4280495576 cites W2969599115 @default.
- W4280495576 cites W2979250794 @default.
- W4280495576 cites W2985324159 @default.
- W4280495576 cites W2991582385 @default.
- W4280495576 cites W2993527780 @default.
- W4280495576 cites W2995098893 @default.
- W4280495576 cites W2996550193 @default.
- W4280495576 cites W3002077565 @default.
- W4280495576 cites W3013605954 @default.
- W4280495576 cites W3025618937 @default.
- W4280495576 cites W3035416751 @default.
- W4280495576 cites W3042329961 @default.
- W4280495576 cites W3085898256 @default.
- W4280495576 cites W3092532236 @default.
- W4280495576 cites W3094369948 @default.
- W4280495576 cites W3100887207 @default.
- W4280495576 cites W3107590074 @default.
- W4280495576 cites W3135274079 @default.
- W4280495576 cites W3138676254 @default.
- W4280495576 cites W3156754237 @default.
- W4280495576 cites W3200896515 @default.
- W4280495576 cites W4240977286 @default.
- W4280495576 doi "https://doi.org/10.1007/s40264-022-01172-5" @default.
- W4280495576 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35579810" @default.
- W4280495576 hasPublicationYear "2022" @default.
- W4280495576 type Work @default.
- W4280495576 citedByCount "4" @default.