Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280496051> ?p ?o ?g. }
- W4280496051 endingPage "117564" @default.
- W4280496051 startingPage "117564" @default.
- W4280496051 abstract "Unlike existing models that aim to address the challenge of scene text detection and recognition separately, the proposed work aims to address both text detection and recognition using a single architecture to deal with arbitrarily oriented/shaped text. Towards this aim, a novel Text Proposal with Location-Awareness-Attention Network (TPLAANet) for arbitrarily oriented/shaped text detection and recognition is proposed. For text detection, the proposed method explores central mask prediction for locating text instances, bounding box regression branch for tight bounding boxes, and mask branch for accurate positions of arbitrarily oriented/shaped text instances. For text recognition, the proposed method explores character information using a Location-Awareness-Attention Network (LAAN), which learns a two-dimensional attention weight and improves the recognition performance. To test the efficacy of the proposed model, we consider the commonly used horizontal and multi-oriented natural scene text datasets, namely, ICDAR2013, ICDAR2015, and the arbitrarily shaped scene text datasets, namely, Total-Text and CTW1500 for experimentation. Experimental results are provided to validate the effectiveness of the proposed method. The code is available at: https://codeocean.com/capsule/5666319/tree/v1." @default.
- W4280496051 created "2022-05-22" @default.
- W4280496051 creator A5025871978 @default.
- W4280496051 creator A5031868292 @default.
- W4280496051 creator A5058663507 @default.
- W4280496051 creator A5068803496 @default.
- W4280496051 creator A5075220317 @default.
- W4280496051 date "2022-11-01" @default.
- W4280496051 modified "2023-10-14" @default.
- W4280496051 title "Text proposals with location-awareness-attention network for arbitrarily shaped scene text detection and recognition" @default.
- W4280496051 cites W2074849287 @default.
- W4280496051 cites W2194187530 @default.
- W4280496051 cites W2254039850 @default.
- W4280496051 cites W2341629100 @default.
- W4280496051 cites W2343052201 @default.
- W4280496051 cites W2604735854 @default.
- W4280496051 cites W2605076167 @default.
- W4280496051 cites W2605982830 @default.
- W4280496051 cites W2750938222 @default.
- W4280496051 cites W2777652944 @default.
- W4280496051 cites W2779757316 @default.
- W4280496051 cites W2784050770 @default.
- W4280496051 cites W2795619303 @default.
- W4280496051 cites W2810028092 @default.
- W4280496051 cites W2810983211 @default.
- W4280496051 cites W2875814315 @default.
- W4280496051 cites W2900564790 @default.
- W4280496051 cites W2910056729 @default.
- W4280496051 cites W2914492226 @default.
- W4280496051 cites W2942382135 @default.
- W4280496051 cites W2949749214 @default.
- W4280496051 cites W2959965583 @default.
- W4280496051 cites W2962984063 @default.
- W4280496051 cites W2962986948 @default.
- W4280496051 cites W2963353821 @default.
- W4280496051 cites W2963398399 @default.
- W4280496051 cites W2963517393 @default.
- W4280496051 cites W2963647456 @default.
- W4280496051 cites W2963648432 @default.
- W4280496051 cites W2963836589 @default.
- W4280496051 cites W2963840241 @default.
- W4280496051 cites W2964018263 @default.
- W4280496051 cites W2964296749 @default.
- W4280496051 cites W2965512000 @default.
- W4280496051 cites W2967615747 @default.
- W4280496051 cites W2970910956 @default.
- W4280496051 cites W2981969038 @default.
- W4280496051 cites W2988098900 @default.
- W4280496051 cites W2989889352 @default.
- W4280496051 cites W2991609675 @default.
- W4280496051 cites W2996956254 @default.
- W4280496051 cites W2997371611 @default.
- W4280496051 cites W2997749585 @default.
- W4280496051 cites W2998621280 @default.
- W4280496051 cites W3002492016 @default.
- W4280496051 cites W3005436539 @default.
- W4280496051 cites W3009262022 @default.
- W4280496051 cites W3034792612 @default.
- W4280496051 cites W3035679705 @default.
- W4280496051 cites W3035914943 @default.
- W4280496051 cites W3042760913 @default.
- W4280496051 cites W3043865394 @default.
- W4280496051 cites W3085882459 @default.
- W4280496051 cites W3092309237 @default.
- W4280496051 cites W3093587902 @default.
- W4280496051 cites W3100773886 @default.
- W4280496051 cites W3103867398 @default.
- W4280496051 cites W3113735332 @default.
- W4280496051 cites W3113987534 @default.
- W4280496051 cites W3134523352 @default.
- W4280496051 cites W3137156863 @default.
- W4280496051 cites W3170431225 @default.
- W4280496051 cites W3173990630 @default.
- W4280496051 doi "https://doi.org/10.1016/j.eswa.2022.117564" @default.
- W4280496051 hasPublicationYear "2022" @default.
- W4280496051 type Work @default.
- W4280496051 citedByCount "3" @default.
- W4280496051 countsByYear W42804960512023 @default.
- W4280496051 crossrefType "journal-article" @default.
- W4280496051 hasAuthorship W4280496051A5025871978 @default.
- W4280496051 hasAuthorship W4280496051A5031868292 @default.
- W4280496051 hasAuthorship W4280496051A5058663507 @default.
- W4280496051 hasAuthorship W4280496051A5068803496 @default.
- W4280496051 hasAuthorship W4280496051A5075220317 @default.
- W4280496051 hasConcept C107457646 @default.
- W4280496051 hasConcept C115961682 @default.
- W4280496051 hasConcept C153180895 @default.
- W4280496051 hasConcept C154945302 @default.
- W4280496051 hasConcept C15744967 @default.
- W4280496051 hasConcept C169760540 @default.
- W4280496051 hasConcept C169900460 @default.
- W4280496051 hasConcept C204321447 @default.
- W4280496051 hasConcept C2983589003 @default.
- W4280496051 hasConcept C2986089797 @default.
- W4280496051 hasConcept C41008148 @default.
- W4280496051 hasConceptScore W4280496051C107457646 @default.
- W4280496051 hasConceptScore W4280496051C115961682 @default.
- W4280496051 hasConceptScore W4280496051C153180895 @default.