Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280496611> ?p ?o ?g. }
- W4280496611 endingPage "2341" @default.
- W4280496611 startingPage "2341" @default.
- W4280496611 abstract "Accurate extraction of crop cultivated area and spatial distribution is essential for food security. Crop classification methods based on machine learning and deep learning and remotely sensed time-series data are widely utilized to detect crop planting area. However, few studies assess the effectiveness of machine learning and deep learning algorithm integrated time-series satellite data for identifying multiple crop type classification over a large-scale region. Hence, this study aims to evaluate the effectiveness of machine learning and deep learning models in crop classification and provide a framework for large-scale multiple crop type classification based on time-series of satellite data. The time-series of the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and NaE (combined NDVI and EVI) were adopted as input features, and four widely used machine learning models, including Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN), and their integration (Stacking) were compared to examine the performance of multiple crop types (i.e., wheat, corn, wheat-corn, early rice, and early rice-late rice) classification in the North China Plain. The performance of two types of deep learning classifiers: the One-dimensional Convolutional Neural Network (Conv1D) and Long Short-Term Memory Networks (LSTM), were also tested. The results showed that the NaE feature performed best among three input features, and the Stacking model produced the highest accuracy (77.12%) compared to other algorithms." @default.
- W4280496611 created "2022-05-22" @default.
- W4280496611 creator A5008115917 @default.
- W4280496611 creator A5013638369 @default.
- W4280496611 creator A5015552047 @default.
- W4280496611 creator A5029438036 @default.
- W4280496611 creator A5030694298 @default.
- W4280496611 creator A5050193259 @default.
- W4280496611 creator A5059406450 @default.
- W4280496611 creator A5065172118 @default.
- W4280496611 creator A5066522810 @default.
- W4280496611 creator A5072663733 @default.
- W4280496611 creator A5080908700 @default.
- W4280496611 creator A5090866405 @default.
- W4280496611 date "2022-05-12" @default.
- W4280496611 modified "2023-10-18" @default.
- W4280496611 title "Evaluating the Effectiveness of Machine Learning and Deep Learning Models Combined Time-Series Satellite Data for Multiple Crop Types Classification over a Large-Scale Region" @default.
- W4280496611 cites W1964357740 @default.
- W4280496611 cites W1968496754 @default.
- W4280496611 cites W1985514099 @default.
- W4280496611 cites W1991361881 @default.
- W4280496611 cites W1991676838 @default.
- W4280496611 cites W1994366805 @default.
- W4280496611 cites W2016435228 @default.
- W4280496611 cites W2018636632 @default.
- W4280496611 cites W2031619975 @default.
- W4280496611 cites W2034978228 @default.
- W4280496611 cites W2040218731 @default.
- W4280496611 cites W2059342086 @default.
- W4280496611 cites W2059830792 @default.
- W4280496611 cites W2087434474 @default.
- W4280496611 cites W2090231298 @default.
- W4280496611 cites W2113503197 @default.
- W4280496611 cites W2132424470 @default.
- W4280496611 cites W2138751033 @default.
- W4280496611 cites W2145862305 @default.
- W4280496611 cites W2153350045 @default.
- W4280496611 cites W2160566385 @default.
- W4280496611 cites W2215190323 @default.
- W4280496611 cites W2221744192 @default.
- W4280496611 cites W2606635696 @default.
- W4280496611 cites W2641842219 @default.
- W4280496611 cites W2680780302 @default.
- W4280496611 cites W2730238284 @default.
- W4280496611 cites W2741038359 @default.
- W4280496611 cites W2783323081 @default.
- W4280496611 cites W2783608381 @default.
- W4280496611 cites W2792827505 @default.
- W4280496611 cites W2830912868 @default.
- W4280496611 cites W2903282641 @default.
- W4280496611 cites W2960863152 @default.
- W4280496611 cites W2982440102 @default.
- W4280496611 cites W3012181369 @default.
- W4280496611 cites W3017188840 @default.
- W4280496611 cites W3080185092 @default.
- W4280496611 cites W3119853618 @default.
- W4280496611 cites W3132153414 @default.
- W4280496611 cites W3135103104 @default.
- W4280496611 cites W3199550622 @default.
- W4280496611 cites W3207501994 @default.
- W4280496611 cites W3210159389 @default.
- W4280496611 cites W3216498661 @default.
- W4280496611 cites W600580655 @default.
- W4280496611 doi "https://doi.org/10.3390/rs14102341" @default.
- W4280496611 hasPublicationYear "2022" @default.
- W4280496611 type Work @default.
- W4280496611 citedByCount "17" @default.
- W4280496611 countsByYear W42804966112022 @default.
- W4280496611 countsByYear W42804966112023 @default.
- W4280496611 crossrefType "journal-article" @default.
- W4280496611 hasAuthorship W4280496611A5008115917 @default.
- W4280496611 hasAuthorship W4280496611A5013638369 @default.
- W4280496611 hasAuthorship W4280496611A5015552047 @default.
- W4280496611 hasAuthorship W4280496611A5029438036 @default.
- W4280496611 hasAuthorship W4280496611A5030694298 @default.
- W4280496611 hasAuthorship W4280496611A5050193259 @default.
- W4280496611 hasAuthorship W4280496611A5059406450 @default.
- W4280496611 hasAuthorship W4280496611A5065172118 @default.
- W4280496611 hasAuthorship W4280496611A5066522810 @default.
- W4280496611 hasAuthorship W4280496611A5072663733 @default.
- W4280496611 hasAuthorship W4280496611A5080908700 @default.
- W4280496611 hasAuthorship W4280496611A5090866405 @default.
- W4280496611 hasBestOaLocation W42804966111 @default.
- W4280496611 hasConcept C108583219 @default.
- W4280496611 hasConcept C119857082 @default.
- W4280496611 hasConcept C12267149 @default.
- W4280496611 hasConcept C124101348 @default.
- W4280496611 hasConcept C153180895 @default.
- W4280496611 hasConcept C1549246 @default.
- W4280496611 hasConcept C154945302 @default.
- W4280496611 hasConcept C169258074 @default.
- W4280496611 hasConcept C205649164 @default.
- W4280496611 hasConcept C25989453 @default.
- W4280496611 hasConcept C2778755073 @default.
- W4280496611 hasConcept C41008148 @default.
- W4280496611 hasConcept C50644808 @default.
- W4280496611 hasConcept C58640448 @default.
- W4280496611 hasConcept C6557445 @default.