Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280496952> ?p ?o ?g. }
- W4280496952 endingPage "11" @default.
- W4280496952 startingPage "1" @default.
- W4280496952 abstract "China Internet plus agriculture was first put forward in 2015 by the Chinese government's work report, laying the foundation for the development of Internet plus agriculture and promoting the rapid growth of e-commerce marketing of agricultural products. The combination of agricultural product marketing and e-commerce effectively reduces the intermediate links of agricultural product sales. Many e-commerce professional villages have sprung up in some rural areas across the country, and the number of rural e-commerce stores has continued to grow. At this stage, rural e-commerce has become a new way of agricultural trade, and rural e-commerce has formed a unique rural e-store. At present, the e-commerce market share of agricultural products in rural stores is very large, and its advantages are favored by the government, scientific research institutions, and agricultural products processing enterprises. However, with the gradual development of rural e-commerce, it has also encountered many difficulties. Based on this point, this study applies deep learning and data mining to optimize e-commerce marketing. First, with the growth of the online scale of agricultural product transaction data, the creation of traditional shallow model cannot meet the needs of online data processing. Therefore, this study decides to use the deep learning theory for optimization. It has excellent performance in the technical fields of big data processing and image and voice processing and has strong construction ability, which can effectively represent the characteristics of the model. Combined with the characteristics of e-commerce agricultural products processing and consumer practice, this study designs and develops a new customer value evaluation model based on data mining and e-commerce agricultural products value characteristics in the field of e-commerce. By combining deep learning and data mining technology, this study applies it to the field of e-commerce, so as to promote the transformation of marketing optimization." @default.
- W4280496952 created "2022-05-22" @default.
- W4280496952 creator A5000442581 @default.
- W4280496952 creator A5001322305 @default.
- W4280496952 creator A5051910555 @default.
- W4280496952 date "2022-05-18" @default.
- W4280496952 modified "2023-10-18" @default.
- W4280496952 title "E-Commerce Marketing Optimization of Agricultural Products Based on Deep Learning and Data Mining" @default.
- W4280496952 cites W1770296179 @default.
- W4280496952 cites W2034067178 @default.
- W4280496952 cites W2104135025 @default.
- W4280496952 cites W2136922672 @default.
- W4280496952 cites W2246090375 @default.
- W4280496952 cites W2336370628 @default.
- W4280496952 cites W2344495013 @default.
- W4280496952 cites W2398804555 @default.
- W4280496952 cites W2521494838 @default.
- W4280496952 cites W2527897905 @default.
- W4280496952 cites W2551802782 @default.
- W4280496952 cites W2605957060 @default.
- W4280496952 cites W2771328918 @default.
- W4280496952 cites W2903112905 @default.
- W4280496952 cites W2922276127 @default.
- W4280496952 cites W2939823081 @default.
- W4280496952 cites W2963975569 @default.
- W4280496952 cites W2970468268 @default.
- W4280496952 cites W2994140543 @default.
- W4280496952 cites W3043317456 @default.
- W4280496952 cites W4285719527 @default.
- W4280496952 doi "https://doi.org/10.1155/2022/6564014" @default.
- W4280496952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35634060" @default.
- W4280496952 hasPublicationYear "2022" @default.
- W4280496952 type Work @default.
- W4280496952 citedByCount "2" @default.
- W4280496952 countsByYear W42804969522023 @default.
- W4280496952 crossrefType "journal-article" @default.
- W4280496952 hasAuthorship W4280496952A5000442581 @default.
- W4280496952 hasAuthorship W4280496952A5001322305 @default.
- W4280496952 hasAuthorship W4280496952A5051910555 @default.
- W4280496952 hasBestOaLocation W42804969521 @default.
- W4280496952 hasConcept C110875604 @default.
- W4280496952 hasConcept C118518473 @default.
- W4280496952 hasConcept C136764020 @default.
- W4280496952 hasConcept C138885662 @default.
- W4280496952 hasConcept C144133560 @default.
- W4280496952 hasConcept C162853370 @default.
- W4280496952 hasConcept C166957645 @default.
- W4280496952 hasConcept C192975520 @default.
- W4280496952 hasConcept C205649164 @default.
- W4280496952 hasConcept C20879000 @default.
- W4280496952 hasConcept C2524010 @default.
- W4280496952 hasConcept C2777350553 @default.
- W4280496952 hasConcept C2778137410 @default.
- W4280496952 hasConcept C33923547 @default.
- W4280496952 hasConcept C41008148 @default.
- W4280496952 hasConcept C41895202 @default.
- W4280496952 hasConcept C54649085 @default.
- W4280496952 hasConcept C78597825 @default.
- W4280496952 hasConcept C90673727 @default.
- W4280496952 hasConcept C93032411 @default.
- W4280496952 hasConceptScore W4280496952C110875604 @default.
- W4280496952 hasConceptScore W4280496952C118518473 @default.
- W4280496952 hasConceptScore W4280496952C136764020 @default.
- W4280496952 hasConceptScore W4280496952C138885662 @default.
- W4280496952 hasConceptScore W4280496952C144133560 @default.
- W4280496952 hasConceptScore W4280496952C162853370 @default.
- W4280496952 hasConceptScore W4280496952C166957645 @default.
- W4280496952 hasConceptScore W4280496952C192975520 @default.
- W4280496952 hasConceptScore W4280496952C205649164 @default.
- W4280496952 hasConceptScore W4280496952C20879000 @default.
- W4280496952 hasConceptScore W4280496952C2524010 @default.
- W4280496952 hasConceptScore W4280496952C2777350553 @default.
- W4280496952 hasConceptScore W4280496952C2778137410 @default.
- W4280496952 hasConceptScore W4280496952C33923547 @default.
- W4280496952 hasConceptScore W4280496952C41008148 @default.
- W4280496952 hasConceptScore W4280496952C41895202 @default.
- W4280496952 hasConceptScore W4280496952C54649085 @default.
- W4280496952 hasConceptScore W4280496952C78597825 @default.
- W4280496952 hasConceptScore W4280496952C90673727 @default.
- W4280496952 hasConceptScore W4280496952C93032411 @default.
- W4280496952 hasLocation W42804969521 @default.
- W4280496952 hasLocation W42804969522 @default.
- W4280496952 hasLocation W42804969523 @default.
- W4280496952 hasLocation W42804969524 @default.
- W4280496952 hasOpenAccess W4280496952 @default.
- W4280496952 hasPrimaryLocation W42804969521 @default.
- W4280496952 hasRelatedWork W2080742560 @default.
- W4280496952 hasRelatedWork W2089326551 @default.
- W4280496952 hasRelatedWork W2156781145 @default.
- W4280496952 hasRelatedWork W2174438959 @default.
- W4280496952 hasRelatedWork W2381530739 @default.
- W4280496952 hasRelatedWork W2384656272 @default.
- W4280496952 hasRelatedWork W2384675785 @default.
- W4280496952 hasRelatedWork W2390972376 @default.
- W4280496952 hasRelatedWork W2543545203 @default.
- W4280496952 hasRelatedWork W281246900 @default.
- W4280496952 hasVolume "2022" @default.
- W4280496952 isParatext "false" @default.