Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280497320> ?p ?o ?g. }
- W4280497320 endingPage "123015" @default.
- W4280497320 startingPage "123015" @default.
- W4280497320 abstract "In this study, laminar, steady-state, incompressible flow with conjugate heat transfer was investigated for one flow passage of a microchannel with staggered diamond-shaped pin fin array. CFD analyzes were performed with OpenFOAM for various configurations and in all cases, the rhomboidal area of each pin fin was kept constant at 0.16 mm2, and the bottom surface of the substrate was subjected to a uniform heat flux of 69.3 kW/m2. Water with temperature-sensitive viscosity was taken as the cooling fluid, and copper with constant thermophysical properties was used for the solid domain. Parametric analyzes have been conducted for various combinations of geometric design variables such as pin fin angle (α), longitudinal pitch-to-diameter ratio (SL/D) and transverse pitch-to-diameter ratio (ST/D) with the flow attribute represented by pin fin Reynolds number (ReD). In the parametric investigations, α ranged from 30∘ to 90∘; ReD ranged from 20 to 100, and SL/D and ST/D were between 2.5 and 4.5. A multi-layer artificial neural network model (ANN), which was coded in Python and trained with parametric CFD results, was utilized to estimate off-design pin fin Nusselt numbers (NuD) and pin fin Poiseuille numbers (PoD), two objective functions representing thermal and hydrodynamic character, respectively. Non-dominated Sorting Genetic Algorithm (NSGA-II) was used to optimize the microchannel configuration, in which the individuals have been evaluated based on the multi-layer neural network prediction model. The constructed multi-layer neural network model predicted NuD and PoD with average errors of 1.39% and 1.02%, respectively. Among all design variables considered, α was found to be the most dominant one on NuD and PoD. Following the genetic algorithm, the majority of the optimal solutions appeared at ST/D around 2.5 and at ReD equal to 20 or 100. Over the entire range of ReD, NSGA-II suggested combinations of optimal α and SL/D yielding 4<NuD<11 and 6<PoD<32 appropriate for thermal or hydrodynamic demands." @default.
- W4280497320 created "2022-05-22" @default.
- W4280497320 creator A5021804416 @default.
- W4280497320 creator A5081853355 @default.
- W4280497320 date "2022-09-01" @default.
- W4280497320 modified "2023-10-13" @default.
- W4280497320 title "Artificial neural network model and multi-objective optimization of microchannel heat sinks with diamond-shaped pin fins" @default.
- W4280497320 cites W1965621168 @default.
- W4280497320 cites W1986187410 @default.
- W4280497320 cites W1988244365 @default.
- W4280497320 cites W1994939753 @default.
- W4280497320 cites W2000726373 @default.
- W4280497320 cites W2001088844 @default.
- W4280497320 cites W2001195564 @default.
- W4280497320 cites W2004377874 @default.
- W4280497320 cites W2009777300 @default.
- W4280497320 cites W2024774907 @default.
- W4280497320 cites W2028436650 @default.
- W4280497320 cites W2047131756 @default.
- W4280497320 cites W2050135676 @default.
- W4280497320 cites W2054595791 @default.
- W4280497320 cites W2064654982 @default.
- W4280497320 cites W2080944514 @default.
- W4280497320 cites W2088084050 @default.
- W4280497320 cites W2092070852 @default.
- W4280497320 cites W2120650798 @default.
- W4280497320 cites W2126105956 @default.
- W4280497320 cites W2150324330 @default.
- W4280497320 cites W2155230432 @default.
- W4280497320 cites W2192941578 @default.
- W4280497320 cites W2213413504 @default.
- W4280497320 cites W2226280651 @default.
- W4280497320 cites W2346700178 @default.
- W4280497320 cites W2465325635 @default.
- W4280497320 cites W2470808524 @default.
- W4280497320 cites W2489780379 @default.
- W4280497320 cites W2509979781 @default.
- W4280497320 cites W2511432550 @default.
- W4280497320 cites W2526539378 @default.
- W4280497320 cites W2603192373 @default.
- W4280497320 cites W2621043233 @default.
- W4280497320 cites W2655207721 @default.
- W4280497320 cites W2765592055 @default.
- W4280497320 cites W2811336508 @default.
- W4280497320 cites W2853606167 @default.
- W4280497320 cites W2934561117 @default.
- W4280497320 cites W2945519684 @default.
- W4280497320 cites W2948400589 @default.
- W4280497320 cites W2974182619 @default.
- W4280497320 cites W2994755684 @default.
- W4280497320 cites W3044649904 @default.
- W4280497320 cites W3086813609 @default.
- W4280497320 cites W3107021698 @default.
- W4280497320 cites W3127440210 @default.
- W4280497320 cites W3128991885 @default.
- W4280497320 cites W3136223571 @default.
- W4280497320 cites W3150053252 @default.
- W4280497320 cites W3154929386 @default.
- W4280497320 cites W3159651310 @default.
- W4280497320 cites W3161130728 @default.
- W4280497320 cites W3167432373 @default.
- W4280497320 cites W3168949142 @default.
- W4280497320 cites W3177044017 @default.
- W4280497320 cites W3185098305 @default.
- W4280497320 cites W3190375511 @default.
- W4280497320 cites W3194019883 @default.
- W4280497320 cites W4205358909 @default.
- W4280497320 cites W4239034201 @default.
- W4280497320 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2022.123015" @default.
- W4280497320 hasPublicationYear "2022" @default.
- W4280497320 type Work @default.
- W4280497320 citedByCount "13" @default.
- W4280497320 countsByYear W42804973202022 @default.
- W4280497320 countsByYear W42804973202023 @default.
- W4280497320 crossrefType "journal-article" @default.
- W4280497320 hasAuthorship W4280497320A5021804416 @default.
- W4280497320 hasAuthorship W4280497320A5081853355 @default.
- W4280497320 hasConcept C121332964 @default.
- W4280497320 hasConcept C130230704 @default.
- W4280497320 hasConcept C159188206 @default.
- W4280497320 hasConcept C159985019 @default.
- W4280497320 hasConcept C182748727 @default.
- W4280497320 hasConcept C186937647 @default.
- W4280497320 hasConcept C192562407 @default.
- W4280497320 hasConcept C196558001 @default.
- W4280497320 hasConcept C50517652 @default.
- W4280497320 hasConcept C57879066 @default.
- W4280497320 hasConcept C63662833 @default.
- W4280497320 hasConcept C76563973 @default.
- W4280497320 hasConcept C91721477 @default.
- W4280497320 hasConcept C97355855 @default.
- W4280497320 hasConceptScore W4280497320C121332964 @default.
- W4280497320 hasConceptScore W4280497320C130230704 @default.
- W4280497320 hasConceptScore W4280497320C159188206 @default.
- W4280497320 hasConceptScore W4280497320C159985019 @default.
- W4280497320 hasConceptScore W4280497320C182748727 @default.
- W4280497320 hasConceptScore W4280497320C186937647 @default.
- W4280497320 hasConceptScore W4280497320C192562407 @default.