Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280497674> ?p ?o ?g. }
- W4280497674 abstract "Abstract Computationally modeling how mutations affect protein binding not only helps uncover the biophysics of protein interfaces, but also enables the redesign and optimization of protein-protein interactions. Traditional high-throughput methods for estimating binding free energies are currently limited to mutations directly at the interface due to difficulties in accurately modeling how more distant allosterically acting mutations propagate their effects through the protein structure. However, the modeling and design of such allosteric mutations is of substantial interest as it allows for greater control and flexibility in protein design applications. We have developed a method that combines high-throughput Rosetta-based side-chain optimization with conformational sampling using classical molecular dynamics simulations, finding significant improvements in our ability to accurately predict allosterically acting mutational perturbations to protein binding. Our approach uses an analytical framework grounded in rigorous alchemical free energy calculations while enabling exploration of a vastly larger sequence space. When comparing to experimental data, we find that our method can predict allosteric perturbations with a level of accuracy similar to that of traditional methods in predicting the effects of non-allosteric interface mutations. This work represents a new and generalizable approach to optimize protein free energy landscapes for desired biological functions. Author Summary Protein-protein interactions are vital to almost all biological processes, and therefore the ability to accurately and efficiently predict how mutations alter protein binding has far-reaching applications in protein analysis and design. Current approaches to predict such mutational free energy changes are limited to mutations directly at the interaction interface. Much research has underlined the prevalence of allosteric protein regulation in biological processes, indicating the importance of understanding and predicting the effects of mutations which act over long distances. In this work we develop a novel method based on theoretically rigorous alchemical free energy calculations and the Rosetta macromolecular modeling suite which can predict the effects of allosteric mutations with levels of accuracy rivaling state of the art interface-specific methods. We hope that our method will serve as a novel framework for high-throughput allosteric mutational analysis and therefore benefit future protein design efforts." @default.
- W4280497674 created "2022-05-22" @default.
- W4280497674 creator A5023229392 @default.
- W4280497674 creator A5087051940 @default.
- W4280497674 date "2022-04-27" @default.
- W4280497674 modified "2023-10-15" @default.
- W4280497674 title "Prediction of allosterically acting mutations using MD simulations and Rosetta" @default.
- W4280497674 cites W1031578623 @default.
- W4280497674 cites W1883224873 @default.
- W4280497674 cites W1969644422 @default.
- W4280497674 cites W1981225934 @default.
- W4280497674 cites W1985724808 @default.
- W4280497674 cites W1995942388 @default.
- W4280497674 cites W1996078098 @default.
- W4280497674 cites W1997125900 @default.
- W4280497674 cites W2009405916 @default.
- W4280497674 cites W2035991134 @default.
- W4280497674 cites W2038182717 @default.
- W4280497674 cites W2040159113 @default.
- W4280497674 cites W2043701535 @default.
- W4280497674 cites W2054881399 @default.
- W4280497674 cites W2059832777 @default.
- W4280497674 cites W2070506154 @default.
- W4280497674 cites W2080685692 @default.
- W4280497674 cites W2092387745 @default.
- W4280497674 cites W2094890323 @default.
- W4280497674 cites W2098888753 @default.
- W4280497674 cites W2110720709 @default.
- W4280497674 cites W2115167726 @default.
- W4280497674 cites W2117541321 @default.
- W4280497674 cites W2130084037 @default.
- W4280497674 cites W2139447954 @default.
- W4280497674 cites W2141624700 @default.
- W4280497674 cites W2150192011 @default.
- W4280497674 cites W2161605421 @default.
- W4280497674 cites W2605786497 @default.
- W4280497674 cites W2606362592 @default.
- W4280497674 cites W2767572383 @default.
- W4280497674 cites W2780523853 @default.
- W4280497674 cites W2953103783 @default.
- W4280497674 cites W3134321132 @default.
- W4280497674 cites W3163631242 @default.
- W4280497674 cites W3164754200 @default.
- W4280497674 cites W3178482351 @default.
- W4280497674 cites W3194452418 @default.
- W4280497674 cites W4246043393 @default.
- W4280497674 doi "https://doi.org/10.1101/2022.04.26.489494" @default.
- W4280497674 hasPublicationYear "2022" @default.
- W4280497674 type Work @default.
- W4280497674 citedByCount "0" @default.
- W4280497674 crossrefType "posted-content" @default.
- W4280497674 hasAuthorship W4280497674A5023229392 @default.
- W4280497674 hasAuthorship W4280497674A5087051940 @default.
- W4280497674 hasBestOaLocation W42804976741 @default.
- W4280497674 hasConcept C105795698 @default.
- W4280497674 hasConcept C113843644 @default.
- W4280497674 hasConcept C11804247 @default.
- W4280497674 hasConcept C129307140 @default.
- W4280497674 hasConcept C147597530 @default.
- W4280497674 hasConcept C152769699 @default.
- W4280497674 hasConcept C157915830 @default.
- W4280497674 hasConcept C166342909 @default.
- W4280497674 hasConcept C170493617 @default.
- W4280497674 hasConcept C173608175 @default.
- W4280497674 hasConcept C185592680 @default.
- W4280497674 hasConcept C186060115 @default.
- W4280497674 hasConcept C2780598303 @default.
- W4280497674 hasConcept C33923547 @default.
- W4280497674 hasConcept C41008148 @default.
- W4280497674 hasConcept C47701112 @default.
- W4280497674 hasConcept C54355233 @default.
- W4280497674 hasConcept C55493867 @default.
- W4280497674 hasConcept C59593255 @default.
- W4280497674 hasConcept C70721500 @default.
- W4280497674 hasConcept C86803240 @default.
- W4280497674 hasConceptScore W4280497674C105795698 @default.
- W4280497674 hasConceptScore W4280497674C113843644 @default.
- W4280497674 hasConceptScore W4280497674C11804247 @default.
- W4280497674 hasConceptScore W4280497674C129307140 @default.
- W4280497674 hasConceptScore W4280497674C147597530 @default.
- W4280497674 hasConceptScore W4280497674C152769699 @default.
- W4280497674 hasConceptScore W4280497674C157915830 @default.
- W4280497674 hasConceptScore W4280497674C166342909 @default.
- W4280497674 hasConceptScore W4280497674C170493617 @default.
- W4280497674 hasConceptScore W4280497674C173608175 @default.
- W4280497674 hasConceptScore W4280497674C185592680 @default.
- W4280497674 hasConceptScore W4280497674C186060115 @default.
- W4280497674 hasConceptScore W4280497674C2780598303 @default.
- W4280497674 hasConceptScore W4280497674C33923547 @default.
- W4280497674 hasConceptScore W4280497674C41008148 @default.
- W4280497674 hasConceptScore W4280497674C47701112 @default.
- W4280497674 hasConceptScore W4280497674C54355233 @default.
- W4280497674 hasConceptScore W4280497674C55493867 @default.
- W4280497674 hasConceptScore W4280497674C59593255 @default.
- W4280497674 hasConceptScore W4280497674C70721500 @default.
- W4280497674 hasConceptScore W4280497674C86803240 @default.
- W4280497674 hasLocation W42804976741 @default.
- W4280497674 hasOpenAccess W4280497674 @default.
- W4280497674 hasPrimaryLocation W42804976741 @default.
- W4280497674 hasRelatedWork W1603229533 @default.