Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280497824> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4280497824 abstract "The market focuses on the Cboe Volatility Index (VIX) or Fear Index, an option-implied forecast of 30 calendar-day realized volatility of S&P 500 returns derived from a cross-section of vanilla options. The VIX is determined using a formula that derives the market’s expectation of realized one-month standard deviation of returns backed out from the near-term call and put options on the S&P 500 index. Market participants such as traders, asset managers, and risk managers, keenly watch the VIX index, and are interested in achieving accurate intelligent probabilistic forecasts of the VIX, and also of the realized volatility of individual stocks. These volatility forecasts are useful to options traders placing bets on the future volatility of individual stocks. This paper examines models that only utilize past values of the VIX and document improvements in forecasting the VIX (and its volatility) over different horizons. The approaches include long short-term memory (LSTM) models, simple moving average methods, data-driven neuro volatility techniques, and industry models like Prophet. Uniquely, we propose a novel VIX price interval forecasting model. The driving idea, unlike the existing VIX price forecasting models, is that the proposed novel LSTM interval forecasting method trains two LSTMs to obtain price forecasts and the forecast error volatility forecasts. All the proposed forecasting methods also avoid model identification and estimation issues, especially for a series like the VIX which is non-stationary. We compare models and document which ones perform best for varied horizons." @default.
- W4280497824 created "2022-05-22" @default.
- W4280497824 creator A5013006175 @default.
- W4280497824 creator A5038922150 @default.
- W4280497824 creator A5043885890 @default.
- W4280497824 creator A5072909289 @default.
- W4280497824 creator A5074812042 @default.
- W4280497824 date "2022-05-01" @default.
- W4280497824 modified "2023-09-29" @default.
- W4280497824 title "Intelligent Probabilistic Forecasts of VIX and its Volatility using Machine Learning Methods" @default.
- W4280497824 cites W2071774723 @default.
- W4280497824 cites W2132179949 @default.
- W4280497824 cites W2932344017 @default.
- W4280497824 cites W2945232411 @default.
- W4280497824 cites W2945699837 @default.
- W4280497824 cites W2957325811 @default.
- W4280497824 cites W3001761277 @default.
- W4280497824 cites W3082291161 @default.
- W4280497824 cites W3087959594 @default.
- W4280497824 cites W3094269015 @default.
- W4280497824 cites W3097734923 @default.
- W4280497824 cites W4240787631 @default.
- W4280497824 doi "https://doi.org/10.1109/cifer52523.2022.9776069" @default.
- W4280497824 hasPublicationYear "2022" @default.
- W4280497824 type Work @default.
- W4280497824 citedByCount "1" @default.
- W4280497824 countsByYear W42804978242022 @default.
- W4280497824 crossrefType "proceedings-article" @default.
- W4280497824 hasAuthorship W4280497824A5013006175 @default.
- W4280497824 hasAuthorship W4280497824A5038922150 @default.
- W4280497824 hasAuthorship W4280497824A5043885890 @default.
- W4280497824 hasAuthorship W4280497824A5072909289 @default.
- W4280497824 hasAuthorship W4280497824A5074812042 @default.
- W4280497824 hasConcept C106159729 @default.
- W4280497824 hasConcept C117996083 @default.
- W4280497824 hasConcept C122282355 @default.
- W4280497824 hasConcept C13290067 @default.
- W4280497824 hasConcept C136764020 @default.
- W4280497824 hasConcept C149782125 @default.
- W4280497824 hasConcept C154945302 @default.
- W4280497824 hasConcept C162324750 @default.
- W4280497824 hasConcept C192620184 @default.
- W4280497824 hasConcept C24189920 @default.
- W4280497824 hasConcept C2777382242 @default.
- W4280497824 hasConcept C41008148 @default.
- W4280497824 hasConcept C49937458 @default.
- W4280497824 hasConcept C60092789 @default.
- W4280497824 hasConcept C85393063 @default.
- W4280497824 hasConcept C91602232 @default.
- W4280497824 hasConceptScore W4280497824C106159729 @default.
- W4280497824 hasConceptScore W4280497824C117996083 @default.
- W4280497824 hasConceptScore W4280497824C122282355 @default.
- W4280497824 hasConceptScore W4280497824C13290067 @default.
- W4280497824 hasConceptScore W4280497824C136764020 @default.
- W4280497824 hasConceptScore W4280497824C149782125 @default.
- W4280497824 hasConceptScore W4280497824C154945302 @default.
- W4280497824 hasConceptScore W4280497824C162324750 @default.
- W4280497824 hasConceptScore W4280497824C192620184 @default.
- W4280497824 hasConceptScore W4280497824C24189920 @default.
- W4280497824 hasConceptScore W4280497824C2777382242 @default.
- W4280497824 hasConceptScore W4280497824C41008148 @default.
- W4280497824 hasConceptScore W4280497824C49937458 @default.
- W4280497824 hasConceptScore W4280497824C60092789 @default.
- W4280497824 hasConceptScore W4280497824C85393063 @default.
- W4280497824 hasConceptScore W4280497824C91602232 @default.
- W4280497824 hasLocation W42804978241 @default.
- W4280497824 hasOpenAccess W4280497824 @default.
- W4280497824 hasPrimaryLocation W42804978241 @default.
- W4280497824 hasRelatedWork W1543991010 @default.
- W4280497824 hasRelatedWork W1814362305 @default.
- W4280497824 hasRelatedWork W2029032393 @default.
- W4280497824 hasRelatedWork W2035831784 @default.
- W4280497824 hasRelatedWork W2154821347 @default.
- W4280497824 hasRelatedWork W2184176858 @default.
- W4280497824 hasRelatedWork W26624297 @default.
- W4280497824 hasRelatedWork W2970588134 @default.
- W4280497824 hasRelatedWork W3125935850 @default.
- W4280497824 hasRelatedWork W3175850921 @default.
- W4280497824 isParatext "false" @default.
- W4280497824 isRetracted "false" @default.
- W4280497824 workType "article" @default.