Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280498214> ?p ?o ?g. }
- W4280498214 endingPage "169279" @default.
- W4280498214 startingPage "169279" @default.
- W4280498214 abstract "In this paper, a method is presented for Multi-Object Tracking (MOT) in presence of partial or complete occlusions. This work focuses on improved object detection and data association in a single view, and also fuses data from multiple views using the Ordered Weighted Aggregation (OWA) algorithm. Hence, a deep learning model was proposed to detect objects more accurately in a tracking-by-detection framework. This paper aims to enhance object detection, data association, and the trajectories of the objects in the MOT algorithm respectively by applying Mask R-CNN, Zernike Moments and combination of several similarity metrics, and fusion of multi-camera information by probability density-based OWA (PD-OWA). The inter-frame detected objects are matched based on the appropriate similarity metrics. In the fusion part, the Kernel Density Estimation (KDE) is utilized to assign weight coefficient to each camera view and determine the descending order of data in the OWA algorithm. Finally, the positions of each object coming from different views are weighted and aggregated. The results show that the proposed method improves object detection, association performance, and tracking trajectory in the “PETS09-S2L1″ and the “EPFL Terrace” video sequences and achieved 81.6% and 79.6% multiple objects tracking accuracy (MOTA), respectively." @default.
- W4280498214 created "2022-05-22" @default.
- W4280498214 creator A5005541249 @default.
- W4280498214 creator A5030216400 @default.
- W4280498214 creator A5084472595 @default.
- W4280498214 date "2022-07-01" @default.
- W4280498214 modified "2023-09-30" @default.
- W4280498214 title "Multi-view data fusion in multi-object tracking with probability density-based ordered weighted aggregation" @default.
- W4280498214 cites W161395236 @default.
- W4280498214 cites W1908451628 @default.
- W4280498214 cites W1987389530 @default.
- W4280498214 cites W2000507354 @default.
- W4280498214 cites W2004142309 @default.
- W4280498214 cites W2007352603 @default.
- W4280498214 cites W2028344184 @default.
- W4280498214 cites W2028523765 @default.
- W4280498214 cites W2033115016 @default.
- W4280498214 cites W2045371359 @default.
- W4280498214 cites W2050591637 @default.
- W4280498214 cites W2074730978 @default.
- W4280498214 cites W2110644024 @default.
- W4280498214 cites W2119958205 @default.
- W4280498214 cites W2124781496 @default.
- W4280498214 cites W2127021804 @default.
- W4280498214 cites W2142515220 @default.
- W4280498214 cites W2143668817 @default.
- W4280498214 cites W2197046994 @default.
- W4280498214 cites W2225887246 @default.
- W4280498214 cites W2260975248 @default.
- W4280498214 cites W2519362791 @default.
- W4280498214 cites W2565639579 @default.
- W4280498214 cites W2584665002 @default.
- W4280498214 cites W2603203130 @default.
- W4280498214 cites W2614114449 @default.
- W4280498214 cites W2620908499 @default.
- W4280498214 cites W2727887115 @default.
- W4280498214 cites W2737779166 @default.
- W4280498214 cites W2884367402 @default.
- W4280498214 cites W2890449072 @default.
- W4280498214 cites W2891885439 @default.
- W4280498214 cites W2892341857 @default.
- W4280498214 cites W2894026810 @default.
- W4280498214 cites W2911075534 @default.
- W4280498214 cites W2921601546 @default.
- W4280498214 cites W2943078549 @default.
- W4280498214 cites W2963150697 @default.
- W4280498214 cites W2966535964 @default.
- W4280498214 cites W2979594848 @default.
- W4280498214 cites W2988916019 @default.
- W4280498214 cites W3006757851 @default.
- W4280498214 cites W3008313540 @default.
- W4280498214 cites W3022775319 @default.
- W4280498214 cites W3022851742 @default.
- W4280498214 cites W3043157863 @default.
- W4280498214 cites W3088911150 @default.
- W4280498214 cites W3091795593 @default.
- W4280498214 cites W3100321043 @default.
- W4280498214 cites W3105313435 @default.
- W4280498214 cites W3106763294 @default.
- W4280498214 cites W3152587760 @default.
- W4280498214 cites W3200590620 @default.
- W4280498214 cites W3207194982 @default.
- W4280498214 cites W3210765078 @default.
- W4280498214 cites W58749160 @default.
- W4280498214 doi "https://doi.org/10.1016/j.ijleo.2022.169279" @default.
- W4280498214 hasPublicationYear "2022" @default.
- W4280498214 type Work @default.
- W4280498214 citedByCount "5" @default.
- W4280498214 countsByYear W42804982142022 @default.
- W4280498214 countsByYear W42804982142023 @default.
- W4280498214 crossrefType "journal-article" @default.
- W4280498214 hasAuthorship W4280498214A5005541249 @default.
- W4280498214 hasAuthorship W4280498214A5030216400 @default.
- W4280498214 hasAuthorship W4280498214A5084472595 @default.
- W4280498214 hasConcept C103278499 @default.
- W4280498214 hasConcept C105795698 @default.
- W4280498214 hasConcept C114614502 @default.
- W4280498214 hasConcept C115961682 @default.
- W4280498214 hasConcept C121332964 @default.
- W4280498214 hasConcept C126042441 @default.
- W4280498214 hasConcept C1276947 @default.
- W4280498214 hasConcept C13662910 @default.
- W4280498214 hasConcept C138885662 @default.
- W4280498214 hasConcept C153180895 @default.
- W4280498214 hasConcept C154945302 @default.
- W4280498214 hasConcept C15744967 @default.
- W4280498214 hasConcept C158525013 @default.
- W4280498214 hasConcept C185429906 @default.
- W4280498214 hasConcept C19417346 @default.
- W4280498214 hasConcept C202474056 @default.
- W4280498214 hasConcept C2775936607 @default.
- W4280498214 hasConcept C2776151529 @default.
- W4280498214 hasConcept C2781238097 @default.
- W4280498214 hasConcept C2983325608 @default.
- W4280498214 hasConcept C31972630 @default.
- W4280498214 hasConcept C33923547 @default.
- W4280498214 hasConcept C33954974 @default.
- W4280498214 hasConcept C41008148 @default.