Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280498746> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4280498746 abstract "Objective: Identifying patients at high risk of AE after TAVR is essential to prolong their survival. Current prediction models for AE after TAVR suffer from a lack of accuracy and external validation. Modern ML approaches can account for higher-dimensional relationships among variables, potentially improving the prediction of outcomes. We performed a systematic review and meta-analysis to estimate the discriminative ability of recently developed ML-based models, which predict various AE after TAVR. Methods: We searched Pubmed, Google Scholar, and Web of Science for studies (Jan 2019 to Jan 2022) that used ML approaches to predict AE after TAVR. Inputs in the meta-analysis were study-reported c-index values and 95% CI. Subgroup analyses separated models by outcome (mortality or clinical AE). Combined effect sizes using a random-effects model, test for heterogeneity, and Egger’s test to assess publication bias were considered. Results: Eight studies were included in the systematic review (patients = 26,023; outcomes = 1,014), of which five models had sufficient data for the meta-analysis. The number of features included in each model ranged from 6 to 107. The two most common models were random forest (n=2) and logistic regression (n=2). The most common outcome was mortality (n=5). The meta-analysis showed that models predicting mortality performed better (0.90; 95% CI: 0.81, 1.01) than models predicting clinical AE (0.80; 95% CI: 0.79, 0.95). The combined mean c-index was 0.87 (95% CI: 0.79-0.95). Test of heterogeneity showed high variation among studies ( I 2 =98.5%). Egger’s test did not indicate publication bias ( β = 1.48; 95% CI: –18.14, 21.09, p = 0.848). Conclusion: Although relatively few studies have applied ML for predicting AE after TAVR, the results are very promising. The time of complex sophisticated models has arrived with improved predictive accuracy through advanced ML methods able to help identify patients who are at risk for clinical AE early in their care." @default.
- W4280498746 created "2022-05-22" @default.
- W4280498746 creator A5004689320 @default.
- W4280498746 creator A5006842773 @default.
- W4280498746 creator A5022351910 @default.
- W4280498746 creator A5033579682 @default.
- W4280498746 creator A5041437377 @default.
- W4280498746 creator A5070405995 @default.
- W4280498746 creator A5070846601 @default.
- W4280498746 date "2022-05-01" @default.
- W4280498746 modified "2023-10-03" @default.
- W4280498746 title "Abstract 52: Application Of Machine Learning In Predicting Clinical Adverse Events After Transcatheter Aortic Valve Replacement Procedure: Insights From A Systematic Review And Meta-analysis Of Studies" @default.
- W4280498746 doi "https://doi.org/10.1161/circoutcomes.15.suppl_1.52" @default.
- W4280498746 hasPublicationYear "2022" @default.
- W4280498746 type Work @default.
- W4280498746 citedByCount "0" @default.
- W4280498746 crossrefType "journal-article" @default.
- W4280498746 hasAuthorship W4280498746A5004689320 @default.
- W4280498746 hasAuthorship W4280498746A5006842773 @default.
- W4280498746 hasAuthorship W4280498746A5022351910 @default.
- W4280498746 hasAuthorship W4280498746A5033579682 @default.
- W4280498746 hasAuthorship W4280498746A5041437377 @default.
- W4280498746 hasAuthorship W4280498746A5070405995 @default.
- W4280498746 hasAuthorship W4280498746A5070846601 @default.
- W4280498746 hasConcept C105795698 @default.
- W4280498746 hasConcept C119423318 @default.
- W4280498746 hasConcept C119857082 @default.
- W4280498746 hasConcept C126322002 @default.
- W4280498746 hasConcept C151956035 @default.
- W4280498746 hasConcept C168743327 @default.
- W4280498746 hasConcept C169258074 @default.
- W4280498746 hasConcept C17744445 @default.
- W4280498746 hasConcept C187960798 @default.
- W4280498746 hasConcept C189708586 @default.
- W4280498746 hasConcept C199539241 @default.
- W4280498746 hasConcept C2779473830 @default.
- W4280498746 hasConcept C2780439572 @default.
- W4280498746 hasConcept C33923547 @default.
- W4280498746 hasConcept C41008148 @default.
- W4280498746 hasConcept C71924100 @default.
- W4280498746 hasConcept C95190672 @default.
- W4280498746 hasConceptScore W4280498746C105795698 @default.
- W4280498746 hasConceptScore W4280498746C119423318 @default.
- W4280498746 hasConceptScore W4280498746C119857082 @default.
- W4280498746 hasConceptScore W4280498746C126322002 @default.
- W4280498746 hasConceptScore W4280498746C151956035 @default.
- W4280498746 hasConceptScore W4280498746C168743327 @default.
- W4280498746 hasConceptScore W4280498746C169258074 @default.
- W4280498746 hasConceptScore W4280498746C17744445 @default.
- W4280498746 hasConceptScore W4280498746C187960798 @default.
- W4280498746 hasConceptScore W4280498746C189708586 @default.
- W4280498746 hasConceptScore W4280498746C199539241 @default.
- W4280498746 hasConceptScore W4280498746C2779473830 @default.
- W4280498746 hasConceptScore W4280498746C2780439572 @default.
- W4280498746 hasConceptScore W4280498746C33923547 @default.
- W4280498746 hasConceptScore W4280498746C41008148 @default.
- W4280498746 hasConceptScore W4280498746C71924100 @default.
- W4280498746 hasConceptScore W4280498746C95190672 @default.
- W4280498746 hasIssue "Suppl_1" @default.
- W4280498746 hasLocation W42804987461 @default.
- W4280498746 hasOpenAccess W4280498746 @default.
- W4280498746 hasPrimaryLocation W42804987461 @default.
- W4280498746 hasRelatedWork W2021593215 @default.
- W4280498746 hasRelatedWork W3037423147 @default.
- W4280498746 hasRelatedWork W3160696308 @default.
- W4280498746 hasRelatedWork W3198189088 @default.
- W4280498746 hasRelatedWork W4200491817 @default.
- W4280498746 hasRelatedWork W4211031581 @default.
- W4280498746 hasRelatedWork W4220756738 @default.
- W4280498746 hasRelatedWork W4251984183 @default.
- W4280498746 hasRelatedWork W4309928371 @default.
- W4280498746 hasRelatedWork W4312140966 @default.
- W4280498746 hasVolume "15" @default.
- W4280498746 isParatext "false" @default.
- W4280498746 isRetracted "false" @default.
- W4280498746 workType "article" @default.