Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280498801> ?p ?o ?g. }
- W4280498801 endingPage "1375" @default.
- W4280498801 startingPage "1363" @default.
- W4280498801 abstract "Screening for drought tolerance is critical to ensure high biomass production of bioenergy sorghum in arid or semi-arid environments. The bottleneck in drought tolerance selection is the challenge of accurately predicting biomass for a large number of genotypes. Although biomass prediction by low-altitude remote sensing has been widely investigated on various crops, the performance of the predictions are not consistent, especially when applied in a breeding context with hundreds of genotypes. In some cases, biomass prediction of a large group of genotypes benefited from multimodal remote sensing data; while in other cases, the benefits were not obvious. In this study, we evaluated the performance of single and multimodal data (thermal, RGB, and multispectral) derived from an unmanned aerial vehicle (UAV) for biomass prediction for drought tolerance assessments within a context of bioenergy sorghum breeding. The biomass of 360 sorghum genotypes grown under well-watered and water-stressed regimes was predicted with a series of UAV-derived canopy features, including canopy structure, spectral reflectance, and thermal radiation features. Biomass predictions using canopy features derived from the multimodal data showed comparable performance with the best results obtained with the single modal data with coefficients of determination (R2) ranging from 0.40 to 0.53 under water-stressed environment and 0.11 to 0.35 under well-watered environment. The significance in biomass prediction was highest with multispectral followed by RGB and lowest with the thermal sensor. Finally, two well-recognized yield-based drought tolerance indices were calculated from ground truth biomass data and UAV predicted biomass, respectively. Results showed that the geometric mean productivity index outperformed the yield stability index in terms of the potential for reliable predictions by the remotely sensed data. Collectively, this study demonstrated a promising strategy for the use of different UAV-based imaging sensors to quantify yield-based drought tolerance." @default.
- W4280498801 created "2022-05-22" @default.
- W4280498801 creator A5000467024 @default.
- W4280498801 creator A5028809050 @default.
- W4280498801 creator A5053275663 @default.
- W4280498801 creator A5060653374 @default.
- W4280498801 creator A5068713577 @default.
- W4280498801 creator A5079179458 @default.
- W4280498801 date "2022-10-01" @default.
- W4280498801 modified "2023-09-30" @default.
- W4280498801 title "Evaluation of UAV-derived multimodal remote sensing data for biomass prediction and drought tolerance assessment in bioenergy sorghum" @default.
- W4280498801 cites W1564437021 @default.
- W4280498801 cites W1964357740 @default.
- W4280498801 cites W1966159501 @default.
- W4280498801 cites W1999654263 @default.
- W4280498801 cites W2006741514 @default.
- W4280498801 cites W2007433910 @default.
- W4280498801 cites W2014052340 @default.
- W4280498801 cites W2034746583 @default.
- W4280498801 cites W2035982950 @default.
- W4280498801 cites W2044092692 @default.
- W4280498801 cites W2050754309 @default.
- W4280498801 cites W2057103039 @default.
- W4280498801 cites W2058686874 @default.
- W4280498801 cites W2067777246 @default.
- W4280498801 cites W2068294942 @default.
- W4280498801 cites W2071525319 @default.
- W4280498801 cites W2078877248 @default.
- W4280498801 cites W2091493105 @default.
- W4280498801 cites W2093242539 @default.
- W4280498801 cites W2126159897 @default.
- W4280498801 cites W2144257420 @default.
- W4280498801 cites W2153958436 @default.
- W4280498801 cites W2165670902 @default.
- W4280498801 cites W2169405091 @default.
- W4280498801 cites W2181451084 @default.
- W4280498801 cites W2313974443 @default.
- W4280498801 cites W2330817317 @default.
- W4280498801 cites W2338304064 @default.
- W4280498801 cites W2466128109 @default.
- W4280498801 cites W2479938810 @default.
- W4280498801 cites W2515492367 @default.
- W4280498801 cites W2531775434 @default.
- W4280498801 cites W2534136842 @default.
- W4280498801 cites W2563584655 @default.
- W4280498801 cites W2750369942 @default.
- W4280498801 cites W2750629881 @default.
- W4280498801 cites W2751108974 @default.
- W4280498801 cites W2757246795 @default.
- W4280498801 cites W2757806273 @default.
- W4280498801 cites W2783070729 @default.
- W4280498801 cites W2790777877 @default.
- W4280498801 cites W2791453805 @default.
- W4280498801 cites W2843415492 @default.
- W4280498801 cites W2894962840 @default.
- W4280498801 cites W2911301733 @default.
- W4280498801 cites W2912977378 @default.
- W4280498801 cites W2922104401 @default.
- W4280498801 cites W2943843675 @default.
- W4280498801 cites W2949439482 @default.
- W4280498801 cites W2954187519 @default.
- W4280498801 cites W2958700157 @default.
- W4280498801 cites W2979808028 @default.
- W4280498801 cites W2979824366 @default.
- W4280498801 cites W2979915629 @default.
- W4280498801 cites W2987372848 @default.
- W4280498801 cites W2996041315 @default.
- W4280498801 cites W3007045993 @default.
- W4280498801 cites W3015117847 @default.
- W4280498801 cites W3035725720 @default.
- W4280498801 cites W3036881055 @default.
- W4280498801 cites W3097571303 @default.
- W4280498801 cites W3119434569 @default.
- W4280498801 cites W3122514873 @default.
- W4280498801 cites W3154092695 @default.
- W4280498801 cites W3154590463 @default.
- W4280498801 cites W3159407029 @default.
- W4280498801 cites W3207463009 @default.
- W4280498801 cites W4200103611 @default.
- W4280498801 doi "https://doi.org/10.1016/j.cj.2022.04.005" @default.
- W4280498801 hasPublicationYear "2022" @default.
- W4280498801 type Work @default.
- W4280498801 citedByCount "10" @default.
- W4280498801 countsByYear W42804988012022 @default.
- W4280498801 countsByYear W42804988012023 @default.
- W4280498801 crossrefType "journal-article" @default.
- W4280498801 hasAuthorship W4280498801A5000467024 @default.
- W4280498801 hasAuthorship W4280498801A5028809050 @default.
- W4280498801 hasAuthorship W4280498801A5053275663 @default.
- W4280498801 hasAuthorship W4280498801A5060653374 @default.
- W4280498801 hasAuthorship W4280498801A5068713577 @default.
- W4280498801 hasAuthorship W4280498801A5079179458 @default.
- W4280498801 hasBestOaLocation W42804988011 @default.
- W4280498801 hasConcept C101000010 @default.
- W4280498801 hasConcept C115540264 @default.
- W4280498801 hasConcept C127313418 @default.
- W4280498801 hasConcept C150772632 @default.
- W4280498801 hasConcept C151730666 @default.