Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280504369> ?p ?o ?g. }
- W4280504369 endingPage "2213" @default.
- W4280504369 startingPage "2205" @default.
- W4280504369 abstract "Abstract Background Postoperative delirium in patients aged 60 years or older with hip fractures adversely affects clinical and functional outcomes. The economic cost of delirium is estimated to be as high as USD 25,000 per patient, with a total budgetary impact between USD 6.6 to USD 82.4 billion annually in the United States alone. Forty percent of delirium episodes are preventable, and accurate risk stratification can decrease the incidence and improve clinical outcomes in patients. A previously developed clinical prediction model (the SORG Orthopaedic Research Group hip fracture delirium machine-learning algorithm) is highly accurate on internal validation (in 28,207 patients with hip fractures aged 60 years or older in a US cohort) in identifying at-risk patients, and it can facilitate the best use of preventive interventions; however, it has not been tested in an independent population. For an algorithm to be useful in real life, it must be valid externally, meaning that it must perform well in a patient cohort different from the cohort used to “train” it. With many promising machine-learning prediction models and many promising delirium models, only few have also been externally validated, and even fewer are international validation studies. Question/purpose Does the SORG hip fracture delirium algorithm, initially trained on a database from the United States, perform well on external validation in patients aged 60 years or older in Australia and New Zealand? Methods We previously developed a model in 2021 for assessing risk of delirium in hip fracture patients using records of 28,207 patients obtained from the American College of Surgeons National Surgical Quality Improvement Program. Variables included in the original model included age, American Society of Anesthesiologists (ASA) class, functional status (independent or partially or totally dependent for any activities of daily living), preoperative dementia, preoperative delirium, and preoperative need for a mobility aid. To assess whether this model could be applied elsewhere, we used records from an international hip fracture registry. Between June 2017 and December 2018, 6672 patients older than 60 years of age in Australia and New Zealand were treated surgically for a femoral neck, intertrochanteric hip, or subtrochanteric hip fracture and entered into the Australian & New Zealand Hip Fracture Registry. Patients were excluded if they had a pathological hip fracture or septic shock. Of all patients, 6% (402 of 6672) did not meet the inclusion criteria, leaving 94% (6270 of 6672) of patients available for inclusion in this retrospective analysis. Seventy-one percent (4249 of 5986) of patients were aged 80 years or older, after accounting for 5% (284 of 6270) of missing values; 68% (4292 of 6266) were female, after accounting for 0.06% (4 of 6270) of missing values, and 83% (4690 of 5661) of patients were classified as ASA III/IV, after accounting for 10% (609 of 6270) of missing values. Missing data were imputed using the missForest methodology. In total, 39% (2467 of 6270) of patients developed postoperative delirium. The performance of the SORG hip fracture delirium algorithm on the validation cohort was assessed by discrimination, calibration, Brier score, and a decision curve analysis. Discrimination, known as the area under the receiver operating characteristic curves (c-statistic), measures the model’s ability to distinguish patients who achieved the outcomes from those who did not and ranges from 0.5 to 1.0, with 1.0 indicating the highest discrimination score and 0.50 the lowest. Calibration plots the predicted versus the observed probabilities, a perfect plot has an intercept of 0 and a slope of 1. The Brier score calculates a composite of discrimination and calibration, with 0 indicating perfect prediction and 1 the poorest. Results The SORG hip fracture algorithm, when applied to an external patient cohort, distinguished between patients at low risk and patients at moderate to high risk of developing postoperative delirium. The SORG hip fracture algorithm performed with a c-statistic of 0.74 (95% confidence interval 0.73 to 0.76). The calibration plot showed high accuracy in the lower predicted probabilities (intercept -0.28, slope 0.52) and a Brier score of 0.22 (the null model Brier score was 0.24). The decision curve analysis showed that the model can be beneficial compared with no model or compared with characterizing all patients as at risk for developing delirium. Conclusion Algorithms developed with machine learning are a potential tool for refining treatment of at-risk patients. If high-risk patients can be reliably identified, resources can be appropriately directed toward their care. Although the current iteration of SORG should not be relied on for patient care, it suggests potential utility in assessing risk. Further assessment in different populations, made easier by international collaborations and standardization of registries, would be useful in the development of universally valid prediction models. The model can be freely accessed at: https://sorg-apps.shinyapps.io/hipfxdelirium/. Level of Evidence Level III, therapeutic study." @default.
- W4280504369 created "2022-05-22" @default.
- W4280504369 creator A5019446660 @default.
- W4280504369 creator A5032292778 @default.
- W4280504369 creator A5045832318 @default.
- W4280504369 creator A5047514640 @default.
- W4280504369 creator A5060958982 @default.
- W4280504369 creator A5064300340 @default.
- W4280504369 creator A5073534215 @default.
- W4280504369 creator A5077134715 @default.
- W4280504369 date "2022-05-10" @default.
- W4280504369 modified "2023-09-30" @default.
- W4280504369 title "Does the SORG Orthopaedic Research Group Hip Fracture Delirium Algorithm Perform Well on an Independent Intercontinental Cohort of Patients With Hip Fractures Who Are 60 Years or Older?" @default.
- W4280504369 cites W1604355414 @default.
- W4280504369 cites W1980276147 @default.
- W4280504369 cites W2004284087 @default.
- W4280504369 cites W2006940889 @default.
- W4280504369 cites W2017068306 @default.
- W4280504369 cites W2032313326 @default.
- W4280504369 cites W2033751103 @default.
- W4280504369 cites W2045030989 @default.
- W4280504369 cites W2054193584 @default.
- W4280504369 cites W2064186732 @default.
- W4280504369 cites W2089388636 @default.
- W4280504369 cites W2116781287 @default.
- W4280504369 cites W2119910794 @default.
- W4280504369 cites W2136122319 @default.
- W4280504369 cites W2149938672 @default.
- W4280504369 cites W2154286581 @default.
- W4280504369 cites W2160358614 @default.
- W4280504369 cites W2206276078 @default.
- W4280504369 cites W2275737843 @default.
- W4280504369 cites W2411279462 @default.
- W4280504369 cites W2417116130 @default.
- W4280504369 cites W2596838035 @default.
- W4280504369 cites W2605975631 @default.
- W4280504369 cites W2740721602 @default.
- W4280504369 cites W2801262765 @default.
- W4280504369 cites W2890840903 @default.
- W4280504369 cites W2901315505 @default.
- W4280504369 cites W2921236195 @default.
- W4280504369 cites W2946642276 @default.
- W4280504369 cites W2948764387 @default.
- W4280504369 cites W2971683027 @default.
- W4280504369 cites W2981879567 @default.
- W4280504369 cites W2989940554 @default.
- W4280504369 cites W3100675687 @default.
- W4280504369 cites W3122598258 @default.
- W4280504369 cites W3130495671 @default.
- W4280504369 cites W3134722958 @default.
- W4280504369 cites W3153657475 @default.
- W4280504369 cites W3182039229 @default.
- W4280504369 cites W4200257826 @default.
- W4280504369 cites W4200487696 @default.
- W4280504369 cites W4205116857 @default.
- W4280504369 cites W4205164650 @default.
- W4280504369 cites W4233026002 @default.
- W4280504369 cites W4248146214 @default.
- W4280504369 cites W4298038674 @default.
- W4280504369 doi "https://doi.org/10.1097/corr.0000000000002246" @default.
- W4280504369 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35561268" @default.
- W4280504369 hasPublicationYear "2022" @default.
- W4280504369 type Work @default.
- W4280504369 citedByCount "4" @default.
- W4280504369 countsByYear W42805043692022 @default.
- W4280504369 countsByYear W42805043692023 @default.
- W4280504369 crossrefType "journal-article" @default.
- W4280504369 hasAuthorship W4280504369A5019446660 @default.
- W4280504369 hasAuthorship W4280504369A5032292778 @default.
- W4280504369 hasAuthorship W4280504369A5045832318 @default.
- W4280504369 hasAuthorship W4280504369A5047514640 @default.
- W4280504369 hasAuthorship W4280504369A5060958982 @default.
- W4280504369 hasAuthorship W4280504369A5064300340 @default.
- W4280504369 hasAuthorship W4280504369A5073534215 @default.
- W4280504369 hasAuthorship W4280504369A5077134715 @default.
- W4280504369 hasBestOaLocation W42805043692 @default.
- W4280504369 hasConcept C11413529 @default.
- W4280504369 hasConcept C118552586 @default.
- W4280504369 hasConcept C120665830 @default.
- W4280504369 hasConcept C121332964 @default.
- W4280504369 hasConcept C126322002 @default.
- W4280504369 hasConcept C141071460 @default.
- W4280504369 hasConcept C177713679 @default.
- W4280504369 hasConcept C1862650 @default.
- W4280504369 hasConcept C201903717 @default.
- W4280504369 hasConcept C27415008 @default.
- W4280504369 hasConcept C2776541429 @default.
- W4280504369 hasConcept C2778885795 @default.
- W4280504369 hasConcept C2779753318 @default.
- W4280504369 hasConcept C2908647359 @default.
- W4280504369 hasConcept C41008148 @default.
- W4280504369 hasConcept C61511704 @default.
- W4280504369 hasConcept C68312169 @default.
- W4280504369 hasConcept C71924100 @default.
- W4280504369 hasConcept C72563966 @default.
- W4280504369 hasConcept C99454951 @default.
- W4280504369 hasConceptScore W4280504369C11413529 @default.
- W4280504369 hasConceptScore W4280504369C118552586 @default.