Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280508304> ?p ?o ?g. }
- W4280508304 endingPage "1090" @default.
- W4280508304 startingPage "1079" @default.
- W4280508304 abstract "Clinical symptoms and inflammatory markers cannot reliably distinguish the etiology of CAP, and chest radiographs have abundant information related with CAP. Hence, we developed a context-fusion convolution neural network (CNN) to explore the application of chest radiographs to distinguish the etiology of CAP in children. This retrospective study included 1769 cases of pediatric pneumonia (viral pneumonia, n = 487; bacterial pneumonia, n = 496; and mycoplasma pneumonia, n = 786). The chest radiographs of the first examination, C-reactive protein (CRP), and white blood cell (WBC) were collected for analysis. All patients were stochastically divided into training, validation, and test cohorts in a 7:1:2 ratio. Automatic lung segmentation and hand-crafted pneumonia lesion segmentation were performed, from which three image-based models including a full-lung model, a local-lesion model, and a context-fusion model were built; two clinical characteristics were used to build a clinical model, while a logistic regression model combined the best CNN model and two clinical characteristics. Our experiments showed that the context-fusion model which integrated the features of the full-lung and local-lesion had better performance than the full-lung model and local-lesion model. The context-fusion model had area under curves of 0.86, 0.88, and 0.93 in identifying viral, bacterial, and mycoplasma pneumonia on the test cohort respectively. The addition of clinical characteristics to the context-fusion model obtained slight improvement. Mycoplasma pneumonia was more easily identified compared with the other two types. Using chest radiographs, we developed a context-fusion CNN model with good performance for noninvasively diagnosing the etiology of community-acquired pneumonia in children, which would help improve early diagnosis and treatment." @default.
- W4280508304 created "2022-05-22" @default.
- W4280508304 creator A5015978857 @default.
- W4280508304 creator A5017492768 @default.
- W4280508304 creator A5020383361 @default.
- W4280508304 creator A5035313775 @default.
- W4280508304 creator A5051776525 @default.
- W4280508304 creator A5063903848 @default.
- W4280508304 creator A5069147685 @default.
- W4280508304 creator A5087771936 @default.
- W4280508304 date "2022-05-18" @default.
- W4280508304 modified "2023-10-15" @default.
- W4280508304 title "Chest Radiographs Using a Context-Fusion Convolution Neural Network (CNN): Can It Distinguish the Etiology of Community-Acquired Pneumonia (CAP) in Children?" @default.
- W4280508304 cites W2022710091 @default.
- W4280508304 cites W2057595397 @default.
- W4280508304 cites W2091724448 @default.
- W4280508304 cites W2098196189 @default.
- W4280508304 cites W2100971877 @default.
- W4280508304 cites W2104473737 @default.
- W4280508304 cites W2137473563 @default.
- W4280508304 cites W2340189121 @default.
- W4280508304 cites W2377892573 @default.
- W4280508304 cites W2414381720 @default.
- W4280508304 cites W2419228861 @default.
- W4280508304 cites W2505548737 @default.
- W4280508304 cites W2516783031 @default.
- W4280508304 cites W2549697535 @default.
- W4280508304 cites W2593051680 @default.
- W4280508304 cites W2608231518 @default.
- W4280508304 cites W2773040443 @default.
- W4280508304 cites W2790564346 @default.
- W4280508304 cites W2806167384 @default.
- W4280508304 cites W2809267624 @default.
- W4280508304 cites W2895598278 @default.
- W4280508304 cites W2901794879 @default.
- W4280508304 cites W2901954625 @default.
- W4280508304 cites W2924899577 @default.
- W4280508304 cites W2924911266 @default.
- W4280508304 cites W2926242485 @default.
- W4280508304 cites W2940932172 @default.
- W4280508304 cites W2954104052 @default.
- W4280508304 cites W2956123709 @default.
- W4280508304 cites W2963466845 @default.
- W4280508304 cites W2965573156 @default.
- W4280508304 cites W2967345187 @default.
- W4280508304 cites W2970132235 @default.
- W4280508304 cites W2981705567 @default.
- W4280508304 cites W2981830068 @default.
- W4280508304 cites W2981988113 @default.
- W4280508304 cites W3017170546 @default.
- W4280508304 cites W3023402713 @default.
- W4280508304 doi "https://doi.org/10.1007/s10278-021-00543-1" @default.
- W4280508304 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35585465" @default.
- W4280508304 hasPublicationYear "2022" @default.
- W4280508304 type Work @default.
- W4280508304 citedByCount "2" @default.
- W4280508304 countsByYear W42805083042023 @default.
- W4280508304 crossrefType "journal-article" @default.
- W4280508304 hasAuthorship W4280508304A5015978857 @default.
- W4280508304 hasAuthorship W4280508304A5017492768 @default.
- W4280508304 hasAuthorship W4280508304A5020383361 @default.
- W4280508304 hasAuthorship W4280508304A5035313775 @default.
- W4280508304 hasAuthorship W4280508304A5051776525 @default.
- W4280508304 hasAuthorship W4280508304A5063903848 @default.
- W4280508304 hasAuthorship W4280508304A5069147685 @default.
- W4280508304 hasAuthorship W4280508304A5087771936 @default.
- W4280508304 hasBestOaLocation W42805083041 @default.
- W4280508304 hasConcept C126322002 @default.
- W4280508304 hasConcept C126838900 @default.
- W4280508304 hasConcept C142724271 @default.
- W4280508304 hasConcept C151730666 @default.
- W4280508304 hasConcept C2777714996 @default.
- W4280508304 hasConcept C2777914695 @default.
- W4280508304 hasConcept C2778158872 @default.
- W4280508304 hasConcept C2779134260 @default.
- W4280508304 hasConcept C2779215961 @default.
- W4280508304 hasConcept C2779343474 @default.
- W4280508304 hasConcept C2779706735 @default.
- W4280508304 hasConcept C3008058167 @default.
- W4280508304 hasConcept C36454342 @default.
- W4280508304 hasConcept C524204448 @default.
- W4280508304 hasConcept C71924100 @default.
- W4280508304 hasConcept C86803240 @default.
- W4280508304 hasConceptScore W4280508304C126322002 @default.
- W4280508304 hasConceptScore W4280508304C126838900 @default.
- W4280508304 hasConceptScore W4280508304C142724271 @default.
- W4280508304 hasConceptScore W4280508304C151730666 @default.
- W4280508304 hasConceptScore W4280508304C2777714996 @default.
- W4280508304 hasConceptScore W4280508304C2777914695 @default.
- W4280508304 hasConceptScore W4280508304C2778158872 @default.
- W4280508304 hasConceptScore W4280508304C2779134260 @default.
- W4280508304 hasConceptScore W4280508304C2779215961 @default.
- W4280508304 hasConceptScore W4280508304C2779343474 @default.
- W4280508304 hasConceptScore W4280508304C2779706735 @default.
- W4280508304 hasConceptScore W4280508304C3008058167 @default.
- W4280508304 hasConceptScore W4280508304C36454342 @default.
- W4280508304 hasConceptScore W4280508304C524204448 @default.
- W4280508304 hasConceptScore W4280508304C71924100 @default.