Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280508461> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4280508461 abstract "Abstract Developing fault diagnosis for the cooling dehumidifier is very important for improving the equipment reliability and saving energy consumption. This paper mainly studies and explores the compound fault diagnosis for the cooling dehumidifier. Firstly, the dehumidifier data acquisition system is built, which can be applied to the data acquisition, work status simulation, and fault diagnosis. Secondly, a compound fault diagnosis model based on radial basis function neural network (RBFNN) improved by kernel principle component analysis (KPCA) and adaptive genetic algorithm (AGA) is proposed. Aiming at the problems that the selection of RBF width depends on expert knowledge, the network structure scale is large or the training speed is slow in the conventional RBFNN models, on the one hand, AGA and K-means clustering algorithm are employed to automatically optimize the RBF width, the number of hidden layer neurons and the neuron centers, which guarantees the model has small structure and fast computing speed on the premise of sufficient output precision; on the other hand, KPCA is used to reduce the dimension of the model input data, which not only effectively extracts the nonlinear features, but also further simplifies the network structure. Finally, the proposed method is validated and compared with the conventional models. The results show that this proposed model can not only be effectively applied to the dehumidifier compound fault diagnosis, but also has prominent application advantages." @default.
- W4280508461 created "2022-05-22" @default.
- W4280508461 creator A5013240145 @default.
- W4280508461 creator A5078086953 @default.
- W4280508461 creator A5090426292 @default.
- W4280508461 date "2022-05-18" @default.
- W4280508461 modified "2023-09-25" @default.
- W4280508461 title "Compound Fault Diagnosis for Cooling Dehumidifier Based on RBF Neural Network Improved by Kernel Principle Component analysis and Adaptive Genetic Algorithm" @default.
- W4280508461 doi "https://doi.org/10.21203/rs.3.rs-1611461/v1" @default.
- W4280508461 hasPublicationYear "2022" @default.
- W4280508461 type Work @default.
- W4280508461 citedByCount "0" @default.
- W4280508461 crossrefType "posted-content" @default.
- W4280508461 hasAuthorship W4280508461A5013240145 @default.
- W4280508461 hasAuthorship W4280508461A5078086953 @default.
- W4280508461 hasAuthorship W4280508461A5090426292 @default.
- W4280508461 hasBestOaLocation W42805084611 @default.
- W4280508461 hasConcept C11413529 @default.
- W4280508461 hasConcept C114614502 @default.
- W4280508461 hasConcept C119857082 @default.
- W4280508461 hasConcept C121332964 @default.
- W4280508461 hasConcept C124101348 @default.
- W4280508461 hasConcept C127313418 @default.
- W4280508461 hasConcept C154945302 @default.
- W4280508461 hasConcept C163258240 @default.
- W4280508461 hasConcept C165205528 @default.
- W4280508461 hasConcept C168167062 @default.
- W4280508461 hasConcept C175551986 @default.
- W4280508461 hasConcept C202444582 @default.
- W4280508461 hasConcept C33676613 @default.
- W4280508461 hasConcept C33923547 @default.
- W4280508461 hasConcept C41008148 @default.
- W4280508461 hasConcept C43214815 @default.
- W4280508461 hasConcept C50644808 @default.
- W4280508461 hasConcept C62520636 @default.
- W4280508461 hasConcept C73555534 @default.
- W4280508461 hasConcept C74193536 @default.
- W4280508461 hasConcept C8880873 @default.
- W4280508461 hasConcept C97355855 @default.
- W4280508461 hasConcept C98856871 @default.
- W4280508461 hasConceptScore W4280508461C11413529 @default.
- W4280508461 hasConceptScore W4280508461C114614502 @default.
- W4280508461 hasConceptScore W4280508461C119857082 @default.
- W4280508461 hasConceptScore W4280508461C121332964 @default.
- W4280508461 hasConceptScore W4280508461C124101348 @default.
- W4280508461 hasConceptScore W4280508461C127313418 @default.
- W4280508461 hasConceptScore W4280508461C154945302 @default.
- W4280508461 hasConceptScore W4280508461C163258240 @default.
- W4280508461 hasConceptScore W4280508461C165205528 @default.
- W4280508461 hasConceptScore W4280508461C168167062 @default.
- W4280508461 hasConceptScore W4280508461C175551986 @default.
- W4280508461 hasConceptScore W4280508461C202444582 @default.
- W4280508461 hasConceptScore W4280508461C33676613 @default.
- W4280508461 hasConceptScore W4280508461C33923547 @default.
- W4280508461 hasConceptScore W4280508461C41008148 @default.
- W4280508461 hasConceptScore W4280508461C43214815 @default.
- W4280508461 hasConceptScore W4280508461C50644808 @default.
- W4280508461 hasConceptScore W4280508461C62520636 @default.
- W4280508461 hasConceptScore W4280508461C73555534 @default.
- W4280508461 hasConceptScore W4280508461C74193536 @default.
- W4280508461 hasConceptScore W4280508461C8880873 @default.
- W4280508461 hasConceptScore W4280508461C97355855 @default.
- W4280508461 hasConceptScore W4280508461C98856871 @default.
- W4280508461 hasLocation W42805084611 @default.
- W4280508461 hasOpenAccess W4280508461 @default.
- W4280508461 hasPrimaryLocation W42805084611 @default.
- W4280508461 hasRelatedWork W2116495260 @default.
- W4280508461 hasRelatedWork W2204008287 @default.
- W4280508461 hasRelatedWork W2348161902 @default.
- W4280508461 hasRelatedWork W2359549665 @default.
- W4280508461 hasRelatedWork W2367020105 @default.
- W4280508461 hasRelatedWork W2377166112 @default.
- W4280508461 hasRelatedWork W2379068443 @default.
- W4280508461 hasRelatedWork W2382761789 @default.
- W4280508461 hasRelatedWork W2392110728 @default.
- W4280508461 hasRelatedWork W4287845157 @default.
- W4280508461 isParatext "false" @default.
- W4280508461 isRetracted "false" @default.
- W4280508461 workType "article" @default.