Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280510131> ?p ?o ?g. }
- W4280510131 endingPage "2695" @default.
- W4280510131 startingPage "2685" @default.
- W4280510131 abstract "The aim of drug design and development is to produce a drug that can inhibit the target protein and possess a balanced physicochemical and toxicity profile. Traditionally, this is a multistep process where different parameters such as activity and physicochemical and pharmacokinetic properties are optimized sequentially, which often leads to high attrition rate during later stages of drug design and development. We have developed a deep learning-based de novo drug design method that can design novel small molecules by optimizing target specificity as well as multiple parameters (including late-stage parameters) in a single step. All possible combinations of parameters were optimized to understand the effect of each parameter over the other parameters. An explainable predictive model was used to identify the molecular fragments responsible for the property being optimized. The proposed method was applied against the human 5-hydroxy tryptamine receptor 1B (5-HT1B), a protein from the central nervous system (CNS). Various physicochemical properties specific to CNS drugs were considered along with the target specificity and blood–brain barrier permeability (BBBP), which act as an additional challenge for CNS drug delivery. The contribution of each parameter toward molecule design was identified by analyzing the properties of generated small molecules from optimization of all possible parameter combinations. The final optimized generative model was able to design similar inhibitors compared to known inhibitors of 5-HT1B. In addition, the functional groups of the generated small molecules that guide the BBBP predictive model were identified through feature attribution techniques." @default.
- W4280510131 created "2022-05-22" @default.
- W4280510131 creator A5016790815 @default.
- W4280510131 creator A5027584199 @default.
- W4280510131 creator A5042990614 @default.
- W4280510131 date "2022-05-17" @default.
- W4280510131 modified "2023-09-29" @default.
- W4280510131 title "An <i>In Silico</i> Explainable Multiparameter Optimization Approach for <i>De Novo</i> Drug Design against Proteins from the Central Nervous System" @default.
- W4280510131 cites W1500036797 @default.
- W4280510131 cites W1505823450 @default.
- W4280510131 cites W1991054810 @default.
- W4280510131 cites W2009038792 @default.
- W4280510131 cites W2011188338 @default.
- W4280510131 cites W2021431618 @default.
- W4280510131 cites W2030215451 @default.
- W4280510131 cites W2032065659 @default.
- W4280510131 cites W2038702914 @default.
- W4280510131 cites W2043509228 @default.
- W4280510131 cites W2048277731 @default.
- W4280510131 cites W2057569612 @default.
- W4280510131 cites W2113364934 @default.
- W4280510131 cites W2114650590 @default.
- W4280510131 cites W2134967712 @default.
- W4280510131 cites W2165168652 @default.
- W4280510131 cites W2255345601 @default.
- W4280510131 cites W2300160852 @default.
- W4280510131 cites W2319060767 @default.
- W4280510131 cites W2578240541 @default.
- W4280510131 cites W2593632281 @default.
- W4280510131 cites W2594183968 @default.
- W4280510131 cites W2610148085 @default.
- W4280510131 cites W2786822500 @default.
- W4280510131 cites W2789328564 @default.
- W4280510131 cites W2794994220 @default.
- W4280510131 cites W2887280559 @default.
- W4280510131 cites W2897337442 @default.
- W4280510131 cites W2949986955 @default.
- W4280510131 cites W2952524552 @default.
- W4280510131 cites W2953128081 @default.
- W4280510131 cites W2956961449 @default.
- W4280510131 cites W2971690404 @default.
- W4280510131 cites W3007309629 @default.
- W4280510131 cites W3008526009 @default.
- W4280510131 cites W3019676419 @default.
- W4280510131 cites W3090171308 @default.
- W4280510131 cites W3100358278 @default.
- W4280510131 cites W3100751385 @default.
- W4280510131 cites W3125566655 @default.
- W4280510131 cites W3174777205 @default.
- W4280510131 cites W3179318616 @default.
- W4280510131 cites W34002366 @default.
- W4280510131 cites W4214567217 @default.
- W4280510131 cites W4249605295 @default.
- W4280510131 doi "https://doi.org/10.1021/acs.jcim.2c00462" @default.
- W4280510131 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35581002" @default.
- W4280510131 hasPublicationYear "2022" @default.
- W4280510131 type Work @default.
- W4280510131 citedByCount "9" @default.
- W4280510131 countsByYear W42805101312022 @default.
- W4280510131 countsByYear W42805101312023 @default.
- W4280510131 crossrefType "journal-article" @default.
- W4280510131 hasAuthorship W4280510131A5016790815 @default.
- W4280510131 hasAuthorship W4280510131A5027584199 @default.
- W4280510131 hasAuthorship W4280510131A5042990614 @default.
- W4280510131 hasConcept C104317684 @default.
- W4280510131 hasConcept C119857082 @default.
- W4280510131 hasConcept C164126121 @default.
- W4280510131 hasConcept C185592680 @default.
- W4280510131 hasConcept C2775905019 @default.
- W4280510131 hasConcept C2780035454 @default.
- W4280510131 hasConcept C41008148 @default.
- W4280510131 hasConcept C55493867 @default.
- W4280510131 hasConcept C60644358 @default.
- W4280510131 hasConcept C70721500 @default.
- W4280510131 hasConcept C74187038 @default.
- W4280510131 hasConcept C86803240 @default.
- W4280510131 hasConcept C98274493 @default.
- W4280510131 hasConceptScore W4280510131C104317684 @default.
- W4280510131 hasConceptScore W4280510131C119857082 @default.
- W4280510131 hasConceptScore W4280510131C164126121 @default.
- W4280510131 hasConceptScore W4280510131C185592680 @default.
- W4280510131 hasConceptScore W4280510131C2775905019 @default.
- W4280510131 hasConceptScore W4280510131C2780035454 @default.
- W4280510131 hasConceptScore W4280510131C41008148 @default.
- W4280510131 hasConceptScore W4280510131C55493867 @default.
- W4280510131 hasConceptScore W4280510131C60644358 @default.
- W4280510131 hasConceptScore W4280510131C70721500 @default.
- W4280510131 hasConceptScore W4280510131C74187038 @default.
- W4280510131 hasConceptScore W4280510131C86803240 @default.
- W4280510131 hasConceptScore W4280510131C98274493 @default.
- W4280510131 hasIssue "11" @default.
- W4280510131 hasLocation W42805101311 @default.
- W4280510131 hasLocation W42805101312 @default.
- W4280510131 hasOpenAccess W4280510131 @default.
- W4280510131 hasPrimaryLocation W42805101311 @default.
- W4280510131 hasRelatedWork W2003194288 @default.
- W4280510131 hasRelatedWork W2061397990 @default.
- W4280510131 hasRelatedWork W2080939785 @default.