Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280521970> ?p ?o ?g. }
- W4280521970 endingPage "17" @default.
- W4280521970 startingPage "1" @default.
- W4280521970 abstract "Cancer is considered one of the most aggressive and destructive diseases that shortens the average lives of patients. Misdiagnosed brain tumours lead to false medical intervention, which reduces patients' chance of survival. Accurate early medical diagnoses of brain tumour are an essential point for starting treatment plans that improve the survival of patients with brain tumours. Computer-aided diagnostic systems have provided consecutive successes for helping medical doctors make accurate diagnoses and have conducted positive strides in the field of deep and machine learning. Deep convolutional layers extract strong distinguishing features from the regions of interest compared with those extracted using traditional methods. In this study, different experiments are performed for brain tumour diagnosis by combining deep learning and traditional machine learning techniques. AlexNet and ResNet-18 are used with the support vector machine (SVM) algorithm for brain tumour classification and diagnosis. Brain tumour magnetic resonance imaging (MRI) images are enhanced using the average filter technique. Then, deep learning techniques are applied to extract robust and important deep features via deep convolutional layers. The process of combining deep and machine learning techniques starts, where features are extracted using deep learning techniques, namely, AlexNet and ResNet-18. These features are then classified using SoftMax and SVM. The MRI dataset contains 3,060 images divided into four classes, which are three tumours and one normal. All systems have achieved superior results. Specifically, the AlexNet+SVM hybrid technique exhibits the best performance, with 95.10% accuracy, 95.25% sensitivity, and 98.50% specificity." @default.
- W4280521970 created "2022-05-22" @default.
- W4280521970 creator A5000299397 @default.
- W4280521970 creator A5064022042 @default.
- W4280521970 creator A5068490455 @default.
- W4280521970 creator A5070917590 @default.
- W4280521970 creator A5077882166 @default.
- W4280521970 creator A5081256502 @default.
- W4280521970 date "2022-05-18" @default.
- W4280521970 modified "2023-10-14" @default.
- W4280521970 title "Early Diagnosis of Brain Tumour MRI Images Using Hybrid Techniques between Deep and Machine Learning" @default.
- W4280521970 cites W1673391334 @default.
- W4280521970 cites W2047424515 @default.
- W4280521970 cites W2366536035 @default.
- W4280521970 cites W2746388194 @default.
- W4280521970 cites W2755044641 @default.
- W4280521970 cites W2771001980 @default.
- W4280521970 cites W2773164951 @default.
- W4280521970 cites W2788923878 @default.
- W4280521970 cites W2790913410 @default.
- W4280521970 cites W2804196013 @default.
- W4280521970 cites W2894511130 @default.
- W4280521970 cites W2909471530 @default.
- W4280521970 cites W2910541852 @default.
- W4280521970 cites W2972535786 @default.
- W4280521970 cites W2983509244 @default.
- W4280521970 cites W2984802304 @default.
- W4280521970 cites W2985860224 @default.
- W4280521970 cites W2988141759 @default.
- W4280521970 cites W2995003683 @default.
- W4280521970 cites W3002769598 @default.
- W4280521970 cites W3014041368 @default.
- W4280521970 cites W3017621176 @default.
- W4280521970 cites W3019196002 @default.
- W4280521970 cites W3024767511 @default.
- W4280521970 cites W3034436104 @default.
- W4280521970 cites W3034970121 @default.
- W4280521970 cites W3043327973 @default.
- W4280521970 cites W3047434002 @default.
- W4280521970 cites W3049092267 @default.
- W4280521970 cites W3081645692 @default.
- W4280521970 cites W3122059051 @default.
- W4280521970 cites W3172921504 @default.
- W4280521970 cites W3207052288 @default.
- W4280521970 cites W3207228697 @default.
- W4280521970 cites W3215630567 @default.
- W4280521970 cites W4200067765 @default.
- W4280521970 cites W4200204081 @default.
- W4280521970 doi "https://doi.org/10.1155/2022/8330833" @default.
- W4280521970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35633922" @default.
- W4280521970 hasPublicationYear "2022" @default.
- W4280521970 type Work @default.
- W4280521970 citedByCount "35" @default.
- W4280521970 countsByYear W42805219702022 @default.
- W4280521970 countsByYear W42805219702023 @default.
- W4280521970 crossrefType "journal-article" @default.
- W4280521970 hasAuthorship W4280521970A5000299397 @default.
- W4280521970 hasAuthorship W4280521970A5064022042 @default.
- W4280521970 hasAuthorship W4280521970A5068490455 @default.
- W4280521970 hasAuthorship W4280521970A5070917590 @default.
- W4280521970 hasAuthorship W4280521970A5077882166 @default.
- W4280521970 hasAuthorship W4280521970A5081256502 @default.
- W4280521970 hasBestOaLocation W42805219701 @default.
- W4280521970 hasConcept C108583219 @default.
- W4280521970 hasConcept C119857082 @default.
- W4280521970 hasConcept C12267149 @default.
- W4280521970 hasConcept C126838900 @default.
- W4280521970 hasConcept C143409427 @default.
- W4280521970 hasConcept C153180895 @default.
- W4280521970 hasConcept C154945302 @default.
- W4280521970 hasConcept C188441871 @default.
- W4280521970 hasConcept C41008148 @default.
- W4280521970 hasConcept C534262118 @default.
- W4280521970 hasConcept C71924100 @default.
- W4280521970 hasConcept C81363708 @default.
- W4280521970 hasConceptScore W4280521970C108583219 @default.
- W4280521970 hasConceptScore W4280521970C119857082 @default.
- W4280521970 hasConceptScore W4280521970C12267149 @default.
- W4280521970 hasConceptScore W4280521970C126838900 @default.
- W4280521970 hasConceptScore W4280521970C143409427 @default.
- W4280521970 hasConceptScore W4280521970C153180895 @default.
- W4280521970 hasConceptScore W4280521970C154945302 @default.
- W4280521970 hasConceptScore W4280521970C188441871 @default.
- W4280521970 hasConceptScore W4280521970C41008148 @default.
- W4280521970 hasConceptScore W4280521970C534262118 @default.
- W4280521970 hasConceptScore W4280521970C71924100 @default.
- W4280521970 hasConceptScore W4280521970C81363708 @default.
- W4280521970 hasLocation W42805219701 @default.
- W4280521970 hasLocation W42805219702 @default.
- W4280521970 hasLocation W42805219703 @default.
- W4280521970 hasLocation W42805219704 @default.
- W4280521970 hasLocation W42805219705 @default.
- W4280521970 hasOpenAccess W4280521970 @default.
- W4280521970 hasPrimaryLocation W42805219701 @default.
- W4280521970 hasRelatedWork W2731899572 @default.
- W4280521970 hasRelatedWork W2743258233 @default.
- W4280521970 hasRelatedWork W2913997398 @default.
- W4280521970 hasRelatedWork W2977314777 @default.