Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280524457> ?p ?o ?g. }
- W4280524457 endingPage "11" @default.
- W4280524457 startingPage "1" @default.
- W4280524457 abstract "Nowadays, there is a growing need for Internet of Things (IoT)-based mobile healthcare applications that help to predict diseases. In recent years, several people have been diagnosed with diabetes, and according to World Health Organization (WHO), diabetes affects 346 million individuals worldwide. Therefore, we propose a noninvasive self-care system based on the IoT and machine learning (ML) that analyses blood sugar and other key indicators to predict diabetes early. The main purpose of this work is to develop enhanced diabetes management applications which help in patient monitoring and technology-assisted decision-making. The proposed hybrid ensemble ML model predicts diabetes mellitus by combining both bagging and boosting methods. An online IoT-based application and offline questionnaire with 15 questions about health, family history, and lifestyle were used to recruit a total of 10221 people for the study. For both datasets, the experimental findings suggest that our proposed model outperforms state-of-the-art techniques." @default.
- W4280524457 created "2022-05-22" @default.
- W4280524457 creator A5000482594 @default.
- W4280524457 creator A5035299588 @default.
- W4280524457 creator A5051562711 @default.
- W4280524457 creator A5068792506 @default.
- W4280524457 creator A5079007571 @default.
- W4280524457 creator A5083987210 @default.
- W4280524457 date "2022-05-18" @default.
- W4280524457 modified "2023-09-30" @default.
- W4280524457 title "IoT-Based Hybrid Ensemble Machine Learning Model for Efficient Diabetes Mellitus Prediction" @default.
- W4280524457 cites W2168261002 @default.
- W4280524457 cites W2576683119 @default.
- W4280524457 cites W2581490583 @default.
- W4280524457 cites W2586297068 @default.
- W4280524457 cites W2737140247 @default.
- W4280524457 cites W2775450699 @default.
- W4280524457 cites W2785886333 @default.
- W4280524457 cites W2807027008 @default.
- W4280524457 cites W2899963038 @default.
- W4280524457 cites W2900329012 @default.
- W4280524457 cites W2906027675 @default.
- W4280524457 cites W2914527623 @default.
- W4280524457 cites W2944123939 @default.
- W4280524457 cites W2947408682 @default.
- W4280524457 cites W2972823046 @default.
- W4280524457 cites W2972869264 @default.
- W4280524457 cites W2982494647 @default.
- W4280524457 cites W2986446268 @default.
- W4280524457 cites W3007212997 @default.
- W4280524457 cites W3008906415 @default.
- W4280524457 cites W3012254913 @default.
- W4280524457 cites W3020776760 @default.
- W4280524457 cites W3039254823 @default.
- W4280524457 cites W3039358234 @default.
- W4280524457 cites W3082974902 @default.
- W4280524457 cites W3097563503 @default.
- W4280524457 cites W3127852736 @default.
- W4280524457 cites W3146991051 @default.
- W4280524457 cites W3157304175 @default.
- W4280524457 cites W3172140041 @default.
- W4280524457 cites W3184114351 @default.
- W4280524457 cites W3196539715 @default.
- W4280524457 cites W4200585446 @default.
- W4280524457 cites W4223646140 @default.
- W4280524457 cites W4224243355 @default.
- W4280524457 doi "https://doi.org/10.1155/2022/2389636" @default.
- W4280524457 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35634091" @default.
- W4280524457 hasPublicationYear "2022" @default.
- W4280524457 type Work @default.
- W4280524457 citedByCount "14" @default.
- W4280524457 countsByYear W42805244572022 @default.
- W4280524457 countsByYear W42805244572023 @default.
- W4280524457 crossrefType "journal-article" @default.
- W4280524457 hasAuthorship W4280524457A5000482594 @default.
- W4280524457 hasAuthorship W4280524457A5035299588 @default.
- W4280524457 hasAuthorship W4280524457A5051562711 @default.
- W4280524457 hasAuthorship W4280524457A5068792506 @default.
- W4280524457 hasAuthorship W4280524457A5079007571 @default.
- W4280524457 hasAuthorship W4280524457A5083987210 @default.
- W4280524457 hasBestOaLocation W42805244571 @default.
- W4280524457 hasConcept C108827166 @default.
- W4280524457 hasConcept C119857082 @default.
- W4280524457 hasConcept C119898033 @default.
- W4280524457 hasConcept C134018914 @default.
- W4280524457 hasConcept C154945302 @default.
- W4280524457 hasConcept C160735492 @default.
- W4280524457 hasConcept C162324750 @default.
- W4280524457 hasConcept C41008148 @default.
- W4280524457 hasConcept C45942800 @default.
- W4280524457 hasConcept C46686674 @default.
- W4280524457 hasConcept C50522688 @default.
- W4280524457 hasConcept C555293320 @default.
- W4280524457 hasConcept C71924100 @default.
- W4280524457 hasConcept C81860439 @default.
- W4280524457 hasConceptScore W4280524457C108827166 @default.
- W4280524457 hasConceptScore W4280524457C119857082 @default.
- W4280524457 hasConceptScore W4280524457C119898033 @default.
- W4280524457 hasConceptScore W4280524457C134018914 @default.
- W4280524457 hasConceptScore W4280524457C154945302 @default.
- W4280524457 hasConceptScore W4280524457C160735492 @default.
- W4280524457 hasConceptScore W4280524457C162324750 @default.
- W4280524457 hasConceptScore W4280524457C41008148 @default.
- W4280524457 hasConceptScore W4280524457C45942800 @default.
- W4280524457 hasConceptScore W4280524457C46686674 @default.
- W4280524457 hasConceptScore W4280524457C50522688 @default.
- W4280524457 hasConceptScore W4280524457C555293320 @default.
- W4280524457 hasConceptScore W4280524457C71924100 @default.
- W4280524457 hasConceptScore W4280524457C81860439 @default.
- W4280524457 hasLocation W42805244571 @default.
- W4280524457 hasLocation W42805244572 @default.
- W4280524457 hasLocation W42805244573 @default.
- W4280524457 hasOpenAccess W4280524457 @default.
- W4280524457 hasPrimaryLocation W42805244571 @default.
- W4280524457 hasRelatedWork W2135850590 @default.
- W4280524457 hasRelatedWork W2284199375 @default.
- W4280524457 hasRelatedWork W2999196618 @default.
- W4280524457 hasRelatedWork W3096310447 @default.