Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280526994> ?p ?o ?g. }
- W4280526994 endingPage "119164" @default.
- W4280526994 startingPage "119164" @default.
- W4280526994 abstract "The mathematical solution to estimate surface fine particulate matter (PM2.5) from columnar aerosol optical depth (AOD) includes complex variables and involves a bunch of assumptions. Hence, researchers tend to use training-based models to predict PM2.5 from AOD. Here, we integrated regulatory composite PM2.5 measurements, high-resolution satellite AOD, reanalysis meteorological parameters, and a few other auxiliary parameters to train ten different regression models. The performance of these (seven statistical and three machine learning) models was evaluated and inter-compared to identify the best performing model. The accuracies of the model predicted PM2.5 were quantified based on the coefficient of determination (R2), mean absolute bias (MAB), normalized root mean square error (NRMSE), and other relevant regression coefficients. The model's performance on unseen data was investigated in terms of 10-fold cross-validation (CV) and Leave-one station-out CV (LOOCV). For this exercise, we considered the case of NCT-Delhi due to: (i) the availability of dense regulatory PM2.5 measurements, (ii) the possibility of understanding the model performance over a large range of PM2.5 (the daily mean PM2.5 values ranged between ∼ 4 and 492 μg m−3 during the study period), and (iii) the scope of better understanding the influence of extreme meteorological conditions (e.g. the ambient surface temperature varies between ∼5 and 40 °C during a calendar year) on the AOD-PM2.5 relationship. All the models were trained using data collected for the year 2019 (a non-COVID year). Among models under investigation, Machine Learning (ML) models performed better with R2, MAB, and NRMSE values for the CV exercises ranging between 0.88 and 0.93, 14.1 and 18.2 μg m−3, and 0.18 and 0.23, respectively. The generalizability of the results obtained in this study was discussed." @default.
- W4280526994 created "2022-05-22" @default.
- W4280526994 creator A5020398403 @default.
- W4280526994 creator A5036778229 @default.
- W4280526994 creator A5063019356 @default.
- W4280526994 creator A5090864636 @default.
- W4280526994 date "2022-08-01" @default.
- W4280526994 modified "2023-09-28" @default.
- W4280526994 title "Which model to choose? Performance comparison of statistical and machine learning models in predicting PM2.5 from high-resolution satellite aerosol optical depth" @default.
- W4280526994 cites W1173523477 @default.
- W4280526994 cites W2034570314 @default.
- W4280526994 cites W2083944525 @default.
- W4280526994 cites W2108079253 @default.
- W4280526994 cites W2108162680 @default.
- W4280526994 cites W2112869689 @default.
- W4280526994 cites W2129501464 @default.
- W4280526994 cites W2162982697 @default.
- W4280526994 cites W2321069189 @default.
- W4280526994 cites W2607350314 @default.
- W4280526994 cites W2620300958 @default.
- W4280526994 cites W2621121878 @default.
- W4280526994 cites W2623406985 @default.
- W4280526994 cites W2747450656 @default.
- W4280526994 cites W2781898996 @default.
- W4280526994 cites W2790077761 @default.
- W4280526994 cites W2804076223 @default.
- W4280526994 cites W2865430977 @default.
- W4280526994 cites W2884810527 @default.
- W4280526994 cites W2890701797 @default.
- W4280526994 cites W2911964244 @default.
- W4280526994 cites W2917558072 @default.
- W4280526994 cites W2943053796 @default.
- W4280526994 cites W2965521597 @default.
- W4280526994 cites W2970189313 @default.
- W4280526994 cites W3032725109 @default.
- W4280526994 cites W3037132424 @default.
- W4280526994 cites W30802115 @default.
- W4280526994 cites W3093144165 @default.
- W4280526994 cites W3118803334 @default.
- W4280526994 cites W3163076975 @default.
- W4280526994 cites W3178576169 @default.
- W4280526994 cites W3200864911 @default.
- W4280526994 doi "https://doi.org/10.1016/j.atmosenv.2022.119164" @default.
- W4280526994 hasPublicationYear "2022" @default.
- W4280526994 type Work @default.
- W4280526994 citedByCount "3" @default.
- W4280526994 countsByYear W42805269942022 @default.
- W4280526994 countsByYear W42805269942023 @default.
- W4280526994 crossrefType "journal-article" @default.
- W4280526994 hasAuthorship W4280526994A5020398403 @default.
- W4280526994 hasAuthorship W4280526994A5036778229 @default.
- W4280526994 hasAuthorship W4280526994A5063019356 @default.
- W4280526994 hasAuthorship W4280526994A5090864636 @default.
- W4280526994 hasConcept C105795698 @default.
- W4280526994 hasConcept C127413603 @default.
- W4280526994 hasConcept C128990827 @default.
- W4280526994 hasConcept C139945424 @default.
- W4280526994 hasConcept C146978453 @default.
- W4280526994 hasConcept C152877465 @default.
- W4280526994 hasConcept C153294291 @default.
- W4280526994 hasConcept C19269812 @default.
- W4280526994 hasConcept C204323151 @default.
- W4280526994 hasConcept C205649164 @default.
- W4280526994 hasConcept C2779345167 @default.
- W4280526994 hasConcept C33923547 @default.
- W4280526994 hasConcept C39432304 @default.
- W4280526994 hasConcept C48921125 @default.
- W4280526994 hasConcept C62649853 @default.
- W4280526994 hasConcept C83546350 @default.
- W4280526994 hasConceptScore W4280526994C105795698 @default.
- W4280526994 hasConceptScore W4280526994C127413603 @default.
- W4280526994 hasConceptScore W4280526994C128990827 @default.
- W4280526994 hasConceptScore W4280526994C139945424 @default.
- W4280526994 hasConceptScore W4280526994C146978453 @default.
- W4280526994 hasConceptScore W4280526994C152877465 @default.
- W4280526994 hasConceptScore W4280526994C153294291 @default.
- W4280526994 hasConceptScore W4280526994C19269812 @default.
- W4280526994 hasConceptScore W4280526994C204323151 @default.
- W4280526994 hasConceptScore W4280526994C205649164 @default.
- W4280526994 hasConceptScore W4280526994C2779345167 @default.
- W4280526994 hasConceptScore W4280526994C33923547 @default.
- W4280526994 hasConceptScore W4280526994C39432304 @default.
- W4280526994 hasConceptScore W4280526994C48921125 @default.
- W4280526994 hasConceptScore W4280526994C62649853 @default.
- W4280526994 hasConceptScore W4280526994C83546350 @default.
- W4280526994 hasLocation W42805269941 @default.
- W4280526994 hasOpenAccess W4280526994 @default.
- W4280526994 hasPrimaryLocation W42805269941 @default.
- W4280526994 hasRelatedWork W1983373379 @default.
- W4280526994 hasRelatedWork W1987874405 @default.
- W4280526994 hasRelatedWork W2375721435 @default.
- W4280526994 hasRelatedWork W247449116 @default.
- W4280526994 hasRelatedWork W2598237895 @default.
- W4280526994 hasRelatedWork W2671019550 @default.
- W4280526994 hasRelatedWork W2966251753 @default.
- W4280526994 hasRelatedWork W2990830163 @default.
- W4280526994 hasRelatedWork W1943879530 @default.
- W4280526994 hasRelatedWork W2189151464 @default.