Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280528074> ?p ?o ?g. }
- W4280528074 abstract "Evaluating the growth performance of pigs in real-time is laborious and expensive, thus mathematical models based on easily accessible variables are developed. Multiple regression (MR) is the most widely used tool to build prediction models in swine nutrition, while the artificial neural networks (ANN) model is reported to be more accurate than MR model in prediction performance. Therefore, the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study.Body weight (BW), net energy (NE) intake, standardized ileal digestible lysine (SID Lys) intake, and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables. In the training phase, MR models showed high accuracy in both ADG and F/G prediction (R2ADG = 0.929, R2F/G = 0.886) while ANN models with 4, 6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction (R2ADG = 0.964, R2F/G = 0.932). In the testing phase, these ANN models showed better accuracy in ADG prediction (CCC: 0.976 vs. 0.861, R2: 0.951 vs. 0.584), and F/G prediction (CCC: 0.952 vs. 0.900, R2: 0.905 vs. 0.821) compared with the MR models. Meanwhile, the over-fitting occurred in MR models but not in ANN models. On validation data from the animal trial, ANN models exhibited superiority over MR models in both ADG and F/G prediction (P < 0.01). Moreover, the growth stages have a significant effect on the prediction accuracy of the models.Body weight, NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs, with trained ANN models are more flexible and accurate than MR models. Therefore, it is promising to use ANN models in related swine nutrition studies in the future." @default.
- W4280528074 created "2022-05-22" @default.
- W4280528074 creator A5012278873 @default.
- W4280528074 creator A5018162353 @default.
- W4280528074 creator A5065795536 @default.
- W4280528074 creator A5075489596 @default.
- W4280528074 creator A5081007251 @default.
- W4280528074 creator A5082528198 @default.
- W4280528074 date "2022-05-13" @default.
- W4280528074 modified "2023-10-11" @default.
- W4280528074 title "Predicting the growth performance of growing-finishing pigs based on net energy and digestible lysine intake using multiple regression and artificial neural networks models" @default.
- W4280528074 cites W1541795719 @default.
- W4280528074 cites W188635600 @default.
- W4280528074 cites W1953517989 @default.
- W4280528074 cites W1967630886 @default.
- W4280528074 cites W1968571599 @default.
- W4280528074 cites W1973273412 @default.
- W4280528074 cites W1982002223 @default.
- W4280528074 cites W1991693725 @default.
- W4280528074 cites W2002016471 @default.
- W4280528074 cites W2023942624 @default.
- W4280528074 cites W2024893881 @default.
- W4280528074 cites W2052166602 @default.
- W4280528074 cites W2074152062 @default.
- W4280528074 cites W2078963520 @default.
- W4280528074 cites W2091605030 @default.
- W4280528074 cites W2128994522 @default.
- W4280528074 cites W2133677532 @default.
- W4280528074 cites W2136581749 @default.
- W4280528074 cites W2139463428 @default.
- W4280528074 cites W2147600979 @default.
- W4280528074 cites W2148657015 @default.
- W4280528074 cites W2151968358 @default.
- W4280528074 cites W2152771290 @default.
- W4280528074 cites W2225651437 @default.
- W4280528074 cites W2316433864 @default.
- W4280528074 cites W2316522976 @default.
- W4280528074 cites W2415597100 @default.
- W4280528074 cites W2496718325 @default.
- W4280528074 cites W2521688208 @default.
- W4280528074 cites W2581974582 @default.
- W4280528074 cites W2612730345 @default.
- W4280528074 cites W2725997177 @default.
- W4280528074 cites W2791688281 @default.
- W4280528074 cites W2963536678 @default.
- W4280528074 cites W2965101826 @default.
- W4280528074 cites W2977940813 @default.
- W4280528074 cites W2980773467 @default.
- W4280528074 cites W2993884769 @default.
- W4280528074 cites W2999491882 @default.
- W4280528074 cites W3003555299 @default.
- W4280528074 cites W3025725806 @default.
- W4280528074 cites W3026136812 @default.
- W4280528074 cites W3206907515 @default.
- W4280528074 cites W36869587 @default.
- W4280528074 doi "https://doi.org/10.1186/s40104-022-00707-1" @default.
- W4280528074 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35550214" @default.
- W4280528074 hasPublicationYear "2022" @default.
- W4280528074 type Work @default.
- W4280528074 citedByCount "2" @default.
- W4280528074 countsByYear W42805280742022 @default.
- W4280528074 crossrefType "journal-article" @default.
- W4280528074 hasAuthorship W4280528074A5012278873 @default.
- W4280528074 hasAuthorship W4280528074A5018162353 @default.
- W4280528074 hasAuthorship W4280528074A5065795536 @default.
- W4280528074 hasAuthorship W4280528074A5075489596 @default.
- W4280528074 hasAuthorship W4280528074A5081007251 @default.
- W4280528074 hasAuthorship W4280528074A5082528198 @default.
- W4280528074 hasBestOaLocation W42805280741 @default.
- W4280528074 hasConcept C105795698 @default.
- W4280528074 hasConcept C119857082 @default.
- W4280528074 hasConcept C152877465 @default.
- W4280528074 hasConcept C154945302 @default.
- W4280528074 hasConcept C170964787 @default.
- W4280528074 hasConcept C33923547 @default.
- W4280528074 hasConcept C41008148 @default.
- W4280528074 hasConcept C45804977 @default.
- W4280528074 hasConcept C50644808 @default.
- W4280528074 hasConcept C83546350 @default.
- W4280528074 hasConceptScore W4280528074C105795698 @default.
- W4280528074 hasConceptScore W4280528074C119857082 @default.
- W4280528074 hasConceptScore W4280528074C152877465 @default.
- W4280528074 hasConceptScore W4280528074C154945302 @default.
- W4280528074 hasConceptScore W4280528074C170964787 @default.
- W4280528074 hasConceptScore W4280528074C33923547 @default.
- W4280528074 hasConceptScore W4280528074C41008148 @default.
- W4280528074 hasConceptScore W4280528074C45804977 @default.
- W4280528074 hasConceptScore W4280528074C50644808 @default.
- W4280528074 hasConceptScore W4280528074C83546350 @default.
- W4280528074 hasFunder F4320321001 @default.
- W4280528074 hasIssue "1" @default.
- W4280528074 hasLocation W42805280741 @default.
- W4280528074 hasLocation W42805280742 @default.
- W4280528074 hasLocation W42805280743 @default.
- W4280528074 hasOpenAccess W4280528074 @default.
- W4280528074 hasPrimaryLocation W42805280741 @default.
- W4280528074 hasRelatedWork W2050254597 @default.
- W4280528074 hasRelatedWork W2075210509 @default.
- W4280528074 hasRelatedWork W2094213028 @default.
- W4280528074 hasRelatedWork W2166358344 @default.