Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280528802> ?p ?o ?g. }
- W4280528802 endingPage "6562" @default.
- W4280528802 startingPage "6551" @default.
- W4280528802 abstract "The mud weight window (MW) determination is one of the most important parameters in drilling oil and gas wells, where accurate design can secure the drilled well and deliver a stable borehole. In this paper, novel algorithms based on the most influential set of input features are developed to predict pore pressure, including rate of penetration (ROP), deep resistivity (ILD), density (RHOB), photoelectric index (PEF), corrected gamma ray (CGR), compression-wave velocity (Vp), weight on bit (WOB), shear-wave velocity (Vs) and pore compressibility (Cp). The algorithms used in this study are as follows: 1) machine learning algorithms (ML), these are the K-nearest neighbor (KNN) algorithm, weighted K-Nearest Neighbor (WKKNN), and distance weighted KNN (DWKNN); 2) hybrid machine learning algorithms (HML), which include the combination of three ML with particle swarm optimization (PSO) (KNN-PSO, WKNN-PSO and DWKNN-PSO). The 2875-record dataset used in this study was collected from three wells (S1, S2 and S3) in one of the gas reservoirs (Tabnak field) in Iran. After comparing the performance accuracy of all algorithms, DWKNN-PSO has the best performance accuracy compared to other algorithms presented in this paper (for the total dataset of wells S1 and S2: R2=0.9656 and RMSE = 12.6773 psi). Finally, the generalizability of the best predictive algorithm for PP, DWKNN-PSO, is evaluated by testing the proposed algorithm on an unseen dataset from another well (S3) in the field under study, where the DWKNN-PSO algorithm provides PP predictions in well S3 with high accuracy, R2 = 0.9765 and RMSE = 9.7545 psi, confirming its ability to be used in PP prediction in the studied field." @default.
- W4280528802 created "2022-05-22" @default.
- W4280528802 creator A5009599616 @default.
- W4280528802 creator A5012583826 @default.
- W4280528802 creator A5017294484 @default.
- W4280528802 creator A5028188439 @default.
- W4280528802 creator A5039797710 @default.
- W4280528802 creator A5071712376 @default.
- W4280528802 creator A5082631555 @default.
- W4280528802 creator A5087483992 @default.
- W4280528802 creator A5091783246 @default.
- W4280528802 date "2022-11-01" @default.
- W4280528802 modified "2023-10-18" @default.
- W4280528802 title "Data driven models to predict pore pressure using drilling and petrophysical data" @default.
- W4280528802 cites W2032411249 @default.
- W4280528802 cites W2041604057 @default.
- W4280528802 cites W2068395046 @default.
- W4280528802 cites W2596698589 @default.
- W4280528802 cites W2618351545 @default.
- W4280528802 cites W2618515094 @default.
- W4280528802 cites W2620495529 @default.
- W4280528802 cites W2810943906 @default.
- W4280528802 cites W2885026259 @default.
- W4280528802 cites W2900402356 @default.
- W4280528802 cites W2923977719 @default.
- W4280528802 cites W2944000997 @default.
- W4280528802 cites W2975084504 @default.
- W4280528802 cites W2995081319 @default.
- W4280528802 cites W2997280045 @default.
- W4280528802 cites W2997810581 @default.
- W4280528802 cites W2997981891 @default.
- W4280528802 cites W2998385469 @default.
- W4280528802 cites W2999376617 @default.
- W4280528802 cites W3008298654 @default.
- W4280528802 cites W3014278717 @default.
- W4280528802 cites W3015578276 @default.
- W4280528802 cites W3024514109 @default.
- W4280528802 cites W3044670108 @default.
- W4280528802 cites W3080687237 @default.
- W4280528802 cites W3086089451 @default.
- W4280528802 cites W3087870633 @default.
- W4280528802 cites W3089019288 @default.
- W4280528802 cites W3097057126 @default.
- W4280528802 cites W3103312084 @default.
- W4280528802 cites W3105299400 @default.
- W4280528802 cites W3118224338 @default.
- W4280528802 cites W3121003047 @default.
- W4280528802 cites W3121500821 @default.
- W4280528802 cites W3126799357 @default.
- W4280528802 cites W3134332577 @default.
- W4280528802 cites W3163005998 @default.
- W4280528802 cites W3198406420 @default.
- W4280528802 cites W3200106596 @default.
- W4280528802 cites W3213196232 @default.
- W4280528802 cites W4210392227 @default.
- W4280528802 cites W4220755898 @default.
- W4280528802 cites W4238652496 @default.
- W4280528802 doi "https://doi.org/10.1016/j.egyr.2022.04.073" @default.
- W4280528802 hasPublicationYear "2022" @default.
- W4280528802 type Work @default.
- W4280528802 citedByCount "13" @default.
- W4280528802 countsByYear W42805288022022 @default.
- W4280528802 countsByYear W42805288022023 @default.
- W4280528802 crossrefType "journal-article" @default.
- W4280528802 hasAuthorship W4280528802A5009599616 @default.
- W4280528802 hasAuthorship W4280528802A5012583826 @default.
- W4280528802 hasAuthorship W4280528802A5017294484 @default.
- W4280528802 hasAuthorship W4280528802A5028188439 @default.
- W4280528802 hasAuthorship W4280528802A5039797710 @default.
- W4280528802 hasAuthorship W4280528802A5071712376 @default.
- W4280528802 hasAuthorship W4280528802A5082631555 @default.
- W4280528802 hasAuthorship W4280528802A5087483992 @default.
- W4280528802 hasAuthorship W4280528802A5091783246 @default.
- W4280528802 hasBestOaLocation W42805288021 @default.
- W4280528802 hasConcept C105795698 @default.
- W4280528802 hasConcept C11413529 @default.
- W4280528802 hasConcept C127313418 @default.
- W4280528802 hasConcept C139945424 @default.
- W4280528802 hasConcept C152068911 @default.
- W4280528802 hasConcept C154945302 @default.
- W4280528802 hasConcept C187320778 @default.
- W4280528802 hasConcept C191897082 @default.
- W4280528802 hasConcept C192562407 @default.
- W4280528802 hasConcept C25197100 @default.
- W4280528802 hasConcept C2776497017 @default.
- W4280528802 hasConcept C33923547 @default.
- W4280528802 hasConcept C41008148 @default.
- W4280528802 hasConcept C46293882 @default.
- W4280528802 hasConcept C6648577 @default.
- W4280528802 hasConcept C85617194 @default.
- W4280528802 hasConceptScore W4280528802C105795698 @default.
- W4280528802 hasConceptScore W4280528802C11413529 @default.
- W4280528802 hasConceptScore W4280528802C127313418 @default.
- W4280528802 hasConceptScore W4280528802C139945424 @default.
- W4280528802 hasConceptScore W4280528802C152068911 @default.
- W4280528802 hasConceptScore W4280528802C154945302 @default.
- W4280528802 hasConceptScore W4280528802C187320778 @default.
- W4280528802 hasConceptScore W4280528802C191897082 @default.