Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280534626> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4280534626 endingPage "1092" @default.
- W4280534626 startingPage "1081" @default.
- W4280534626 abstract "Abstract: Human & computer interaction has been an important field of study for ages. Humans share universal and fundamental set of emotions which are exhibited through consistent facial expressions or emotion. If computer could understand the feelings of humans, it can give the proper services based on the feedback received. An algorithm that performs detection, extraction, and evaluation of these facial expressions will allow for automatic recognition of human emotion in images and videos. Automatic recognition of facial expressions can be an important component of natural human-machine interfaces; it may also be used in behavioural science and in clinical practices. In this model we give the overview of the work done in the past related to Emotion Recognition using Facial expressions along with our approach towards solving the problem. The approaches used for facial expression include classifiers like Support Vector Machine (SVM), Convolution Neural Network (CNN) are used to classify emotions based on certain regions of interest on the face like lips, lower jaw, eyebrows, cheeks and many more. Kaggle facial expression dataset with seven facial expression labels as happy, sad, surprise, fear, anger, disgust, and neutral is used in this project. The system achieved 56.77 % accuracy and 0.57 precision on testing dataset. Keywords: Facial Expression Recognition, Convolutional Neural Network, Deep Learning." @default.
- W4280534626 created "2022-05-22" @default.
- W4280534626 creator A5010648702 @default.
- W4280534626 creator A5041519700 @default.
- W4280534626 creator A5062382202 @default.
- W4280534626 creator A5079991998 @default.
- W4280534626 date "2022-05-31" @default.
- W4280534626 modified "2023-09-25" @default.
- W4280534626 title "Facial Expression Recognition Using Convolutional Neural Network" @default.
- W4280534626 doi "https://doi.org/10.22214/ijraset.2022.42439" @default.
- W4280534626 hasPublicationYear "2022" @default.
- W4280534626 type Work @default.
- W4280534626 citedByCount "2" @default.
- W4280534626 countsByYear W42805346262023 @default.
- W4280534626 crossrefType "journal-article" @default.
- W4280534626 hasAuthorship W4280534626A5010648702 @default.
- W4280534626 hasAuthorship W4280534626A5041519700 @default.
- W4280534626 hasAuthorship W4280534626A5062382202 @default.
- W4280534626 hasAuthorship W4280534626A5079991998 @default.
- W4280534626 hasBestOaLocation W42805346261 @default.
- W4280534626 hasConcept C118552586 @default.
- W4280534626 hasConcept C12267149 @default.
- W4280534626 hasConcept C153180895 @default.
- W4280534626 hasConcept C154945302 @default.
- W4280534626 hasConcept C15744967 @default.
- W4280534626 hasConcept C177264268 @default.
- W4280534626 hasConcept C195704467 @default.
- W4280534626 hasConcept C199360897 @default.
- W4280534626 hasConcept C206310091 @default.
- W4280534626 hasConcept C2777375102 @default.
- W4280534626 hasConcept C2779302386 @default.
- W4280534626 hasConcept C2780343955 @default.
- W4280534626 hasConcept C28490314 @default.
- W4280534626 hasConcept C41008148 @default.
- W4280534626 hasConcept C46312422 @default.
- W4280534626 hasConcept C52622490 @default.
- W4280534626 hasConcept C81363708 @default.
- W4280534626 hasConcept C90559484 @default.
- W4280534626 hasConceptScore W4280534626C118552586 @default.
- W4280534626 hasConceptScore W4280534626C12267149 @default.
- W4280534626 hasConceptScore W4280534626C153180895 @default.
- W4280534626 hasConceptScore W4280534626C154945302 @default.
- W4280534626 hasConceptScore W4280534626C15744967 @default.
- W4280534626 hasConceptScore W4280534626C177264268 @default.
- W4280534626 hasConceptScore W4280534626C195704467 @default.
- W4280534626 hasConceptScore W4280534626C199360897 @default.
- W4280534626 hasConceptScore W4280534626C206310091 @default.
- W4280534626 hasConceptScore W4280534626C2777375102 @default.
- W4280534626 hasConceptScore W4280534626C2779302386 @default.
- W4280534626 hasConceptScore W4280534626C2780343955 @default.
- W4280534626 hasConceptScore W4280534626C28490314 @default.
- W4280534626 hasConceptScore W4280534626C41008148 @default.
- W4280534626 hasConceptScore W4280534626C46312422 @default.
- W4280534626 hasConceptScore W4280534626C52622490 @default.
- W4280534626 hasConceptScore W4280534626C81363708 @default.
- W4280534626 hasConceptScore W4280534626C90559484 @default.
- W4280534626 hasIssue "5" @default.
- W4280534626 hasLocation W42805346261 @default.
- W4280534626 hasOpenAccess W4280534626 @default.
- W4280534626 hasPrimaryLocation W42805346261 @default.
- W4280534626 hasRelatedWork W1980331490 @default.
- W4280534626 hasRelatedWork W2028755160 @default.
- W4280534626 hasRelatedWork W2143533232 @default.
- W4280534626 hasRelatedWork W2514450782 @default.
- W4280534626 hasRelatedWork W2947045439 @default.
- W4280534626 hasRelatedWork W3167551411 @default.
- W4280534626 hasRelatedWork W336991290 @default.
- W4280534626 hasRelatedWork W4294643408 @default.
- W4280534626 hasRelatedWork W1883936045 @default.
- W4280534626 hasRelatedWork W2519456985 @default.
- W4280534626 hasVolume "10" @default.
- W4280534626 isParatext "false" @default.
- W4280534626 isRetracted "false" @default.
- W4280534626 workType "article" @default.