Matches in SemOpenAlex for { <https://semopenalex.org/work/W4280537549> ?p ?o ?g. }
- W4280537549 endingPage "90" @default.
- W4280537549 startingPage "75" @default.
- W4280537549 abstract "The main goal of this research is to optimize a corrugated high-temperature helical recuperator filled with aerosol-carbon-black nanofluid. This heat exchanger has inner semi-sphere-shaped corrugations with different diameters. In this study, the related effects of different geometric parameters according to the heat-hydraulic performance of the studied helical heat exchanger are analyzed. Moreover, to select the optimal model, the hydraulics-thermal index is examined and its maximum value is introduced as the optimal model. The Discrete Phase, Model (DPM) approach is also used to model multi-phase currents. In order to numerically simulate and solving the governing equations, the Ansys Fluent software, SIMPLE algorithm and the finite volume method were used. As it is realized, the helical corrugated recuperator with corrugation diameter of d=10mm and filled with nanofluid (NF) with volume concentration of φ=0.7% has the maximum thermal-hydraulic performance evaluation criteria. Then, a deep learning method is applied to data in order to obtain the average Nusselt number (Nuav), the pressure drop (ΔP) between outlet and inlet, the friction factor (f), and the PEC for all values of the volume fraction, mass flow rate, and turbulators diameter within the examined range. To this end, an Artificial Neural Network (ANN) with one hidden-layer is employed. The results indicate that the ANN can model the investigated phenomenon with acceptable level of precision." @default.
- W4280537549 created "2022-05-22" @default.
- W4280537549 creator A5030236556 @default.
- W4280537549 creator A5041955477 @default.
- W4280537549 creator A5050382828 @default.
- W4280537549 creator A5057620807 @default.
- W4280537549 creator A5077861803 @default.
- W4280537549 date "2022-08-01" @default.
- W4280537549 modified "2023-09-27" @default.
- W4280537549 title "Numerical analysis of heating aerosol carbon nanofluid flow in a power plant recupesrator with considering ash fouling: a deep learning approach" @default.
- W4280537549 cites W1982067413 @default.
- W4280537549 cites W2016378347 @default.
- W4280537549 cites W2037694053 @default.
- W4280537549 cites W2045996465 @default.
- W4280537549 cites W2055808488 @default.
- W4280537549 cites W2062076790 @default.
- W4280537549 cites W2065362560 @default.
- W4280537549 cites W2076632322 @default.
- W4280537549 cites W2340517725 @default.
- W4280537549 cites W2417844701 @default.
- W4280537549 cites W2539484008 @default.
- W4280537549 cites W2591963602 @default.
- W4280537549 cites W2595229176 @default.
- W4280537549 cites W2617606998 @default.
- W4280537549 cites W2760528291 @default.
- W4280537549 cites W2761492440 @default.
- W4280537549 cites W2765487354 @default.
- W4280537549 cites W2767510685 @default.
- W4280537549 cites W2803470089 @default.
- W4280537549 cites W2808839648 @default.
- W4280537549 cites W2811272829 @default.
- W4280537549 cites W2883114170 @default.
- W4280537549 cites W2884184140 @default.
- W4280537549 cites W2886441610 @default.
- W4280537549 cites W2889667970 @default.
- W4280537549 cites W2894079389 @default.
- W4280537549 cites W2896348913 @default.
- W4280537549 cites W2896800833 @default.
- W4280537549 cites W2904580885 @default.
- W4280537549 cites W2906369291 @default.
- W4280537549 cites W2916821020 @default.
- W4280537549 cites W2933749275 @default.
- W4280537549 cites W2939418222 @default.
- W4280537549 cites W2973756071 @default.
- W4280537549 cites W2973780358 @default.
- W4280537549 cites W2975282046 @default.
- W4280537549 cites W2976427490 @default.
- W4280537549 cites W2978508746 @default.
- W4280537549 cites W2980542196 @default.
- W4280537549 cites W2980915607 @default.
- W4280537549 cites W2981461155 @default.
- W4280537549 cites W2983233863 @default.
- W4280537549 cites W3027673786 @default.
- W4280537549 cites W3036012686 @default.
- W4280537549 cites W3049509698 @default.
- W4280537549 cites W3087589815 @default.
- W4280537549 cites W3108320556 @default.
- W4280537549 cites W3116478298 @default.
- W4280537549 cites W3127949610 @default.
- W4280537549 cites W3129620927 @default.
- W4280537549 cites W3138855125 @default.
- W4280537549 cites W3144500782 @default.
- W4280537549 cites W3154107233 @default.
- W4280537549 cites W3163816308 @default.
- W4280537549 cites W3174421666 @default.
- W4280537549 cites W3200304500 @default.
- W4280537549 cites W3204778125 @default.
- W4280537549 cites W3205952217 @default.
- W4280537549 cites W3211899663 @default.
- W4280537549 cites W4200257007 @default.
- W4280537549 cites W4200373021 @default.
- W4280537549 cites W4205152111 @default.
- W4280537549 cites W4205452932 @default.
- W4280537549 cites W4205841919 @default.
- W4280537549 cites W4206578426 @default.
- W4280537549 cites W4233137840 @default.
- W4280537549 cites W4244736895 @default.
- W4280537549 cites W4256646170 @default.
- W4280537549 cites W566210338 @default.
- W4280537549 cites W593472040 @default.
- W4280537549 doi "https://doi.org/10.1016/j.enganabound.2022.05.001" @default.
- W4280537549 hasPublicationYear "2022" @default.
- W4280537549 type Work @default.
- W4280537549 citedByCount "12" @default.
- W4280537549 countsByYear W42805375492023 @default.
- W4280537549 crossrefType "journal-article" @default.
- W4280537549 hasAuthorship W4280537549A5030236556 @default.
- W4280537549 hasAuthorship W4280537549A5041955477 @default.
- W4280537549 hasAuthorship W4280537549A5050382828 @default.
- W4280537549 hasAuthorship W4280537549A5057620807 @default.
- W4280537549 hasAuthorship W4280537549A5077861803 @default.
- W4280537549 hasConcept C107706546 @default.
- W4280537549 hasConcept C114088122 @default.
- W4280537549 hasConcept C121332964 @default.
- W4280537549 hasConcept C127413603 @default.
- W4280537549 hasConcept C130230704 @default.
- W4280537549 hasConcept C1715860 @default.
- W4280537549 hasConcept C174379495 @default.